
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Technical Interface Description 
 

Version 3.0.1 – 02.09.2021 

 



  

 

 Mobility Data Marketplace  Page 2 
 

Table of Contents 

1 Introduction .......................................................................................................... 6 

1.1 Preamble ............................................................................................................. 6 

1.2 Document Structure ............................................................................................. 7 

1.3 References .......................................................................................................... 7 

1.3.1 General ................................................................................................................ 7 

1.3.2 DATEX II v2 ......................................................................................................... 8 

1.3.3 DATEX II v3 ......................................................................................................... 8 

1.4 List of Abbreviations ............................................................................................ 9 

2 Overview of the MDM Platform Components ..................................................... 11 

3 Data Exchange Formats .................................................................................... 12 

3.1 DATEX II ........................................................................................................... 12 

3.2 Container Format ............................................................................................... 13 

4 Interfaces of the MDM Broker System ............................................................... 14 

4.1 Communication Encryption ................................................................................ 15 

4.2 Compression ..................................................................................................... 16 

4.3 Commitment to Invariability ................................................................................ 16 

4.3.1 DATEX II v2 ....................................................................................................... 16 

4.3.2 DATEX II v3 ....................................................................................................... 16 

4.4 Usage of Interfaces............................................................................................ 18 

4.4.1 Data Supplier ..................................................................................................... 18 

4.4.2 Data Client ......................................................................................................... 18 

4.5 Usage of the „If-Modified-Since“ Header Field in the HTTPS Protocol ............... 19 

4.5.1 Data Supplier ..................................................................................................... 19 

4.5.2 Data Client ......................................................................................................... 19 

4.5.3 Unchanged Data ................................................................................................ 19 

5 DATEX II v2 ....................................................................................................... 20 

5.1 SOAP Interface .................................................................................................. 20 

5.1.1 Data Supplier ..................................................................................................... 20 

5.1.1.1 Client Pull SOAP ............................................................................................... 20 

5.1.1.2 Publisher Push SOAP ........................................................................................ 20 

5.1.2 Data Client ......................................................................................................... 22 

5.1.2.1 Client Pull SOAP ............................................................................................... 22 

5.1.2.2 Publisher Push SOAP ........................................................................................ 22 

5.2 HTTPS Interface ................................................................................................ 24 

5.2.1 Data Supplier ..................................................................................................... 24 

5.2.1.1 Client Pull HTTPS .............................................................................................. 24 



  

 

 Mobility Data Marketplace  Page 3 
 

5.2.2 Data Client ......................................................................................................... 25 

5.2.2.1 Client Pull HTTPS .............................................................................................. 25 

5.3 OCIT-C Interface ............................................................................................... 27 

5.3.1 Features ............................................................................................................ 27 

5.3.2 Data Supplier – Publisher Push OCIT-C ............................................................ 28 

5.3.3 Data Client – Client Pull OCIT-C ........................................................................ 30 

5.3.4 Error Handling ................................................................................................... 34 

6 DATEX II v3 ....................................................................................................... 35 

6.1 XML Schema Application Notes for Exchange 2020 .......................................... 35 

6.1.1 DATEX II v3 Level A or B................................................................................... 36 

6.1.2 DATEX II v3 Level C .......................................................................................... 36 

6.2 SOAP Interface .................................................................................................. 37 

6.2.1 Data Supplier ..................................................................................................... 37 

6.2.1.1 Client Pull SOAP ............................................................................................... 37 

6.2.1.2 Publisher Push SOAP ........................................................................................ 39 

6.2.2 Data Client ......................................................................................................... 41 

6.2.2.1 Client Pull SOAP ............................................................................................... 41 

6.2.2.2 Publisher Push SOAP ........................................................................................ 43 

6.3 HTTPS Interface ................................................................................................ 44 

6.3.1 Data Supplier ..................................................................................................... 44 

6.3.1.1 Client Pull HTTPS .............................................................................................. 44 

6.3.2 Data Client ......................................................................................................... 45 

6.3.2.1 Client Pull HTTPS .............................................................................................. 45 

7 Container ........................................................................................................... 47 

7.1 SOAP Interface .................................................................................................. 47 

7.1.1 Data Supplier ..................................................................................................... 47 

7.1.1.1 Client Pull SOAP ............................................................................................... 47 

7.1.1.2 Publisher Push SOAP ........................................................................................ 48 

7.1.2 Data Client ......................................................................................................... 49 

7.1.2.1 Client Pull SOAP ............................................................................................... 49 

7.1.2.2 Publisher Push SOAP ........................................................................................ 49 

7.2 HTTPS Interface ................................................................................................ 51 

7.2.1 Data Supplier ..................................................................................................... 51 

7.2.1.1 Client Pull HTTPS .............................................................................................. 51 

7.2.1.2 Publisher Push HTTPS ...................................................................................... 52 

7.2.2 Data Client ......................................................................................................... 53 

7.2.2.1 Client Pull HTTPS .............................................................................................. 53 

7.2.2.2 Publisher Push HTTPS ...................................................................................... 54 



  

 

 Mobility Data Marketplace  Page 4 
 

8 Certificate-based M2M Communication ............................................................. 56 

8.1 Tasks of the Security Component ...................................................................... 56 

8.2 Note on Server Name Indication ........................................................................ 57 

8.3 Applying for a Machine Certificate ..................................................................... 57 

8.4 Installing a Machine Certificate and Issuer Certificate ........................................ 57 

8.5 Authentication of the MDM Platform as Web Client............................................ 58 

8.6 Authentication of Data Supplier/Data Client Web Clients ................................... 58 

9 Appendix A- Processing the p12 File for Apache Server Configuration .............. 59 

10 Appendix B – DATEX II HTTP Protocol Support ................................................ 63 



  

 

 Mobility Data Marketplace  Page 5 
 

List of Tables 

Table 1: References (general) ............................................................................................... 8 

Table 2: References (DATEX II v2) ........................................................................................ 8 

Table 3: References (DATEX II v3) ........................................................................................ 9 

Table 4: List of abbreviations ............................................................................................... 10 

Table 5: Overview of the MDM platform components ........................................................... 11 

Table 6: Overview of the interfaces of the MDM broker system ........................................... 15 

Table 7: MDM operation modes ........................................................................................... 18 

Table 8: Request/Response between MDM platform and data client system (Client Pull 
HTTPS) ............................................................................................................. 26 

Table 9: OCIT-C error codes used ....................................................................................... 34 

Table 10: Request/Response between MDM platform and data client system (Client Pull 
HTTPS) ............................................................................................................. 46 

Table 11: Request/Response between data supplier system and MDM platform with client 
pull HTTPS ........................................................................................................ 51 

Table 12: Request/Response between data supplier system and MDM platform with 
publisher push HTTPS ....................................................................................... 53 

Table 13: Response between MDM platform/data client system with Client Pull HTTPS ..... 54 

Table 14: Request/Response between MDM broker system/data client system with Publisher 
Push HTTPS...................................................................................................... 55 

 

List of Figures 

Figure 1: Components of the MDM platform ........................................................................ 11 

Figure 2: Container Format Overview .................................................................................. 13 

Figure 3: Interfaces between data provider, broker system and data client .......................... 14 

Figure 4: Overview of the security architecture .................................................................... 57 

Figure 5: Datei <sammeldatei.pem> .................................................................................... 60 

Figure 6: File  <sammeldatei.pem> ...................................................................................... 61 
 



  

 

 Mobility Data Marketplace  Page 6 
 

1 Introduction 

1.1 Preamble 

The Mobility Data Marketplace (MDM) aims at supporting the exchange of data 
between data suppliers and data clients using interfaces. At the same time, it is a 
central portal with collected information about available online traffic data of 
individual data suppliers. Thus, the MDM platform allows its users to offer, find and 
subscribe to online traffic-related data without the necessity of any time-consuming 
search for relevant data and a complex technical and organizational coordination 
between data clients and data suppliers. The data exchange is handled via 
standardized interfaces. In conclusion, the business processes should be 
simplified for all parties involved and the potential of existing data sources should 
be exploited.  

This interface description is aimed at potential data suppliers and data clients. 
[SOAP] It is presupposed that knowledge in the implementation and operation of 
SOAP web services or HTTPS client/server architectures are provided to use the 
interfaces of the MDM system.  

The data transfer between the MDM platform and the data supplier or data client 
systems can be supplied via SOAP-based web services or simple HTTPS-
GET/POST requests. In addition, the transmission by OCIT-C protocol is provided. 



  

 

 Mobility Data Marketplace  Page 7 
 

1.2 Document Structure 

This document consists of the following sections: 

o Section 1 provides a brief overview, the referenced documents and the list 
of abbreviations 

o Section 2 describes the components of the MDM system. 

o Section 3 handles the available data formats. 

o Section 4 describes the interfaces of the MDM platform for M2M 
communication. 

o Section 5 describes the DATEX II v2 format in detail. 

o Section 6 describes DATEX II v3 accordingly. 

o Section 7 describes the proprietary MDM container format. 

o Section 8 describes the measures which secure the M2M communication. 

1.3 References 

1.3.1 General 

[Source] Publisher 

[BHB] 
MDM User Manual, V3.0.0 

https://service.mdm-portal.de/doc/MDM-UserManual.pdf 

[GZIP] 
RFC 1952 (Mai 1996) 
GZIP File Format Specification Version 4.3, 
https://tools.ietf.org/rfc/rfc1952.txt 

[HTTP/1.1] 
RFC 2616 (Juni 1999) 
Hypertext Transfer Protocol -- HTTP/1.1 
https://www.ietf.org/rfc/rfc2616.txt 

[HTTPS] 
RFC 2818 (Mai 2000) 
HTTP over TLS 
https://www.ietf.org/rfc/rfc2818.txt 

[MCS] 
MDM Container Format Specification 
https://www.mdm-portal.de/wp-
content/uploads/2019/03/mdm_spezifikation_container-v1.1.pdf  

[OCIT-C] 

OCIT-C Specification 
Version 1.1_R1 vom 30.10.2014 

https://www.ocit.org/media/ocit-c_protokoll_v1.1_r1.pdf  

https://www.mdm-portal.de/files/ocit.wsdl  

[PKI] 
RFC 2459 (January 1999) 
Internet X.509 Public Key Infrastructure Certificate and CRL Profile 
https://www.ietf.org/rfc/rfc2459.txt 

[SOAP] 
SOAP Version 1.2 
https://www.w3.org/TR/soap12-part1/ 

https://service.mdm-portal.de/doc/MDM-UserManual.pdf
https://tools.ietf.org/rfc/rfc1952.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2818.txt
https://www.mdm-portal.de/wp-content/uploads/2019/03/mdm_spezifikation_container-v1.1.pdf
https://www.mdm-portal.de/wp-content/uploads/2019/03/mdm_spezifikation_container-v1.1.pdf
https://www.ocit.org/media/ocit-c_protokoll_v1.1_r1.pdf
https://www.mdm-portal.de/files/ocit.wsdl
https://www.ietf.org/rfc/rfc2459.txt
https://www.w3.org/TR/soap12-part1/


  

 

 Mobility Data Marketplace  Page 8 
 

[Source] Publisher 

[URL] 
RFC 1738 (Dezember 1994) 
Uniform Resource Locators (URL) 
https://www.ietf.org/rfc/rfc1738.txt 

[X.509v3] 

ITU-T Recommendation X.509 (1997 E): 
Information Technology - Open Systems Interconnection –  
The Directory: Authentication Framework, June 1997. 
https://www.itu.int/rec/T-REC-X.509-199708-S/en 

Table 1: References (general) 

1.3.2 DATEX II v2 

[Source] Publisher 

[DATEXIIv2PSM] DATEX II v2.0 Exchange Platform Specific Model 

[DATEXIIv2Pull] 
DATEX II v2.0 Pull wsdl 

https://www.mdm-portal.de/files/Pull.wsdl  

[DATEXIIv2Push] 
DATEX II v2.0 Push wsdl 

https://www.mdm-portal.de/files/Push.wsdl  

[DATEXIIv2Schema] DATEX II XML Schema 2.0  

[DATEXIIv2SDG] DATEX II v2.0 Software Developers Guide, Version v.1.2 

[DATEXIIv2Spec] 
Includes the following documents, which are available to all 
registered users for download under https://www.datex2.eu: 
[DATEXIIv2PSM], [DATEXIIv2UG] 

[DATEXIIv2UG] DATEX II v2.0 User Guide v.1.2 

Table 2: References (DATEX II v2) 

1.3.3 DATEX II v3 

[Source] Publisher 

[DATEXIIv3Annex] 
Annexes to Platform Specific Model: 

https://docs.datex2.eu/exchange/2020/psm/annexes.html 

[DATEXIIv3Pull] 
DATEX II v3.0 Snapshot Pull wsdl 

https://www.mdm-portal.de/files/SnapshotPull.wsdl  

[DATEXIIv3Push] 
DATEX II v3.0 Snapshot Push wsdl 

https://www.mdm-portal.de/files/SnapshotPush.wsdl  

[DATEXIIv3Exc] 

Download for Level A and Level B publications: 

https://www.mdm-portal.de/files/Exchange2020LevelAB.zip  

Download for Level C publications: 

https://www.mdm-portal.de/files/Exchange2020LevelC.zip  

https://www.ietf.org/rfc/rfc1738.txt
https://www.itu.int/rec/T-REC-X.509-199708-S/en
https://www.mdm-portal.de/files/Pull.wsdl
https://www.mdm-portal.de/files/Push.wsdl
https://www.datex2.eu/
https://docs.datex2.eu/exchange/2020/psm/annexes.html
https://www.mdm-portal.de/files/SnapshotPull.wsdl
https://www.mdm-portal.de/files/SnapshotPush.wsdl
https://www.mdm-portal.de/files/Exchange2020LevelAB.zip
https://www.mdm-portal.de/files/Exchange2020LevelC.zip


  

 

 Mobility Data Marketplace  Page 9 
 

[Source] Publisher 

[DATEXIIv3ExcUG] 
Exchange 2020 User Guide : 

https://docs.datex2.eu/exchange/2020/userguide/ 

Table 3: References (DATEX II v3) 

1.4 List of Abbreviations 

Abbreviation Resolution 

BASE64 BASE64 describes a method of encoding 8-bit binary data into a string 
that consists only of readable code page-independent ASCII 
characters. 

BASt Bundesanstalt für Straßenwesen (Federal Highway Research Institute) 

DE German 

GMT Greenwich Mean Time 

GUI Graphical User Interface 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

ID Identifier 

IIS Microsoft Internet Information Services 

JSSE Java Secure Socket Extension 

M2M Machine-to-Machine 

MDM Mobility Data Marketplace 

MDV Metadatenverzeichnis (metadata directory) 

OCIT Open Communication Interface for Road Traffic Control Systems 

PAS Publicly Available Specification 

PKI Public Key Infrastructure 

PSM Platform Specific Model 

RC Release Candidate 

RFC Request for Comments 

SDG Software Developers Guide 

SNI Server Name Indication 

SOAP Simple Object Access Protocol 

SSL Secure Sockets Layer 

TLS Transport Layer Security 

URL Uniform Resource Locator 

UTF UCS Transformation Format 

https://docs.datex2.eu/exchange/2020/userguide/


  

 

 Mobility Data Marketplace  Page 10 
 

Abbreviation Resolution 

WS Webserver 

WSDL Web Services Description Language 

XML Extensible Markup Language 

XSD XML Schema Definition 

Table 4: List of abbreviations 



  

 

 Mobility Data Marketplace  Page 11 
 

2 Overview of the MDM Platform Components 

The MDM platform consists of four components that fulfill different roles. 

 

Figure 1: Components of the MDM platform 

Component Description 

Security component Via the security component, the data client system/data supplier 
system can be authenticated to use the services. 

Metadata directory The metadata directory is used to manage all information 
relevant to MDM platform and provides a number of 
organizational services. 

Broker system The broker system handles the actual processing of the data 
packets and it is, therefore, the focus of this interface 
description. 

Administration The administration is realized by means of a web-based user 
interface (GUI), see [BHB] 

Table 5: Overview of the MDM platform components 

The following communication and application scenarios are supported by the MDM 
platform: 

o Interested parties as well as data clients and data suppliers can 
communicate with the metadata directory by using the web GUI, to access 
services, such as researching or registering. To view or edit certain content 
of the metadata directory, an authentication must first be run throughout 
the MDM platform security component. 

o After authentication via the security component, the data client and data 
supplier systems can establish an M2M communication with the broker 
system to deliver or request data. 



  

 

 Mobility Data Marketplace  Page 12 
 

3 Data Exchange Formats 

To exchange mobility data between the broker system and the data supplier / data 
client systems, the following data formats are specified: 

o To allow the use of the platform by standard compliant DATEX II 
implementations at data suppliers or data clients, the MDM platform 
supports the format DATEX  II, which is based on XML, by using native 
interfaces. 

o To create an independent generic interface from specific formats, a new 
data format is provided for transmission. It refers to the so-called container 
format that can be transmitted over the arbitrary XML and binary data. 

The validity of data delivered at the MDM broker interface is not checked 
automatically. Instead, the MDM web GUI provides a button to validate the 
currently stored data packet of a publication. Therefore, the data schemas are 
retrieved via the URL specified in the profile of the publication. 

For publications in DATEX II format, it is the responsibility of the data supplier to 
provide the correct file schema. For publications in container format, the standard 
schema is already made available under a generally valid URL. Please, reference 
this URL in the "schemaLocation" attribute of your XML data packets to provide 
data clients with an automatic validation of the packets. The MDM accepts the data 
packets independent of the validation result and delivers them to the data clients 
even if the result is negative.  

3.1 DATEX II 

DATEX II is a European standard for exchanging mobility data. Basic knowledge 
of DATEX II specification is required for this section [DATEXIIv2Spec]. The original 
implementation of the MDM platform is based on DATEX II v2. Currently, v2 and 
v3 are supported. 

DATEX II defines XML structures for the exchange of mobility data. The underlying 
schema can be viewed under https://www.datex2.eu/. The payload must be 
defined based on this schema. DATEX II determines not only a standard for the 
structure of the payload, but also regulates the exchange process. The latter is 
described in detail in chapter 4. 

The underlying documents on which the DATEX II is based are listed in chapter 
1.3 References as [DATEXIIv2Spec]. The structure of the DATEX II payload is not 
relevant to the MDM platform, as the latter transfers the data unchanged and does 
not process the data in any way. 

DATEX II not only provides for the dispatch of complete data packets, but also for 
sending updates to previous versions. This DATEX II option is not supported by 
the MDM platform: Both the data supplier system and the MDM broker system 
must always send complete data sets. 

This means that each packet contains all records of the relevant publication that 
are known to the data supplier. These records are valid at the time of packet 
sending. It is therefore not possible to send only changes to the "last known" state. 
This may seem to be a disadvantage, but it is a requirement that is essential to the 
preservation of the MDM system scalability. The disadvantage of this partial 
redundancy is tacitly accepted, as it is considered by the scalable architecture of 

http://www.datex2.eu/


  

 

 Mobility Data Marketplace  Page 13 
 

the platform and the performance of modern ICT infrastructure. It should be borne 
in mind that the MDM platform diminishes the burden of scalability of the data 
suppliers.  

3.2 Container Format 

In addition to the DATEX II standard mentioned in the previous section, another 
XML-based model for the transmission of data is supported by the MDM platform. 
This container format called data format has been specially created for the 
exchange of data via the MDM. The schema of the data format is found in the 
container format specification [MCS]. In addition to the actual payload that is 
contained in a body element, the data format allows more structural information to 
be transmitted in a header element. This information is particularly used to control 
the communication process. 

 

 

Figure 2: Container Format Overview 

To keep the model flexible, the format and content of the body element is not 
specified. Thus, not only data in XML format can be transported in containers, but 
also binary data. 



  

 

 Mobility Data Marketplace  Page 14 
 

4 Interfaces of the MDM Broker System 

The MDM broker system takes the role of the client or the role of the server as an 
intermediary between the data supplier system and the data client system, 
depending on the situation: 

o As a client, the broker system can request data from the data supplier or 
the data supplier can - on his own initiative - send the data to the broker 
system. 

o As a client, the data client can on its part request data from the broker 
system or the broker system can send - on its own initiative - the data to 
the data client. 

Figure 3 shows the possible paths that are available for data packet transmission 
between the data supplier and the broker system on the one hand and the broker 
system and the data client on the other. 

 

 

Figure 3: Interfaces between data provider, broker system and data client 

The data packets received or sent by the broker system must have DATEX II 
format or the proprietary container format. 

The transmission protocols HTTPS and SOAP via HTTPS are supported for each 
format. For the format DATEX II, the OCIT-C protocol is also supported. 

Table 6 shows what communications are supported. The section in which the 
relevant communication is described - distinguished by the data supplier and data 
client systems - is mentioned for each data format (DATEX II / Container), 
communication pattern (Client Pull / Publisher Push) and protocol (HTTPS, SOAP, 
OCIT-C), if supported.  

It is additionally indicated whether the data supplier or data client system acts as a 
client or as a server towards the MDM. Client here means that the system makes 
enquiries to the MDM or actively establishes the connection to it. 



  

 

 Mobility Data Marketplace  Page 15 
 

C
o

n
ta

in
e
r
 

D
A

T
E

X
 I

I
 v

2
 

D
A

T
E

X
 I

I
 v

3
 

On the other hand, server means that the system is contacted by the MDM and 
must answer its enquiries. In this case, the MDM must be granted external network 
access to the system to be connected. 

 

 Data Supplier System Data Client System 

SOAP HTTPS 

 

OCIT SOAP HTTPS 

 

OCIT 

 Client Pull 5.1.1.1 

Server 

5.2.1.1 

Server 

- 5.1.2.1 

Client 

5.2.2.1 

Client 

5.3.3 

Client 

Publisher 
Push 

5.1.1.2 

Client 

- 0 

Client 

5.1.2.2 

Server 

- - 

 Client Pull 6.2.1.1 

Server 

6.3.1.1 

Server 

- 6.2.2.1 

Client 

6.3.2.1 

Client 

- 

Publisher 
Push 

6.2.1.2 

Client 

- - 6.2.2.2 

Server 

- - 

 Client Pull 7.1.1.1 

Server 

7.2.1.1 

Server 

- 7.1.2.1 

Client 

7.2.2.1 

Client 

- 

Publisher 
Push 

7.1.1.2 

Client 

7.2.1.2 

Client 

- 7.1.2.2 

Server 

7.2.2.2 

Server 

- 

Table 6: Overview of the interfaces of the MDM broker system 

If the SOAP method is used, the WSDL of the broker service can generally be 
queried at the service endpoint that is specific to the relevant publication or 
subscription using the "?wsdl" request.  

Generally, a data packet can only be retrieved by data clients for the time it is valid 
as specified in the publication profile. With expired validity, the packet is deleted 
from the buffer. 

For the time no new data packet is available, the data client system receives a „No 
Content“ error notification which differs for each protocol. Details are provided in 
the protocol descriptions. 

4.1 Communication Encryption 

The interfaces offered by the MDM platform can be used by the data supplier 
systems and data client systems using the services of the platform. These services 
for data collection or deliveries are provided by using defined and unified URLs 
[URL] and require a certificate-based client authentication via HTTPS [HTTPS]. 
For this client authentication, X.509-compliant certificates are used [PKI] which are 
issued by the operator of the MDM platform. 



  

 

 Mobility Data Marketplace  Page 16 
 

4.2 Compression 

When transmitting data between the MDM platform and the data supplier systems, 
both GZIP-encoded (i.e., compressed) and uncompressed HTTPS requests and 
responses are supported. 

Data between the MDM platform and the data client systems is always transmitted 
– differing from what is stated in [DATEXIIv2PSM] –  by means of GZIP-encoded 
HTTPS requests and responses. 

This always applies, no matter which Exchange protocol is used for HTTP, SOAP 
and OCIT-C. 

4.3 Commitment to Invariability 

The MDM platform has been designed to forward any data from data suppliers to 
data clients without modifications. The DATEX II payload, i.e. the included data 
packages, must not be changed by the broker system. 

For this principle, "Commitment to Invariability" is the established term. 

When the data is supplied via SOAP, this principle is extended to the invariability 
of the SOAP envelope. 

As a major implication of the "Commitment to Invariability", any namespace 
declaration for the DATEX II payload has to be included in the <d2LogicalModel> 
element (for DATEX II v2) or in the so-called messageContainer (for DATEX II v3) 
so that these declarations remain a part of the payload delivery if, e.g., the data is 
supplied via SOAP and then forwarded via HTTP (in this case, the SOAP envelope 
is removed). 

An example each for DATEX II v2 and DATEX II v3, respectively, is provided next 
where the "Commitment to Invariability" is considered properly. 

4.3.1 DATEX II v2 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Envelope xmlns:S="https://schemas.xmlsoap.org/soap/envelope/"> 

  <S:Body> 

    <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2"> 

      <exchange> 

        <supplierIdentification> 

          <country>de</country> 

          <nationalIdentifier>DE-MDM-Musterorg</nationalIdentifier> 

        </supplierIdentification> 

      </exchange> 

      <payloadPublication xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"  

                          xsi:type="SituationPublication" lang="DE"> 

        <publicationTime>2021-08-18T13:09:00.106+02:00</publicationTime> 
        ... 

      </payloadPublication> 

    </d2LogicalModel> 

  </S:Body> 

</S:Envelope> 

4.3.2 DATEX II v3 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Body> 

  <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer" 



  

 

 Mobility Data Marketplace  Page 17 
 

      xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

      xmlns:d2="http://datex2.eu/schema/3/d2Payload" 

      xmlns:loc="http://datex2.eu/schema/3/locationReferencing" 

      xmlns:com="http://datex2.eu/schema/3/common" 

      xmlns:sit="http://datex2.eu/schema/3/situation" 

      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

     xsi:schemaLocation="http://datex2.eu/schema/3/messageContainer 

./DATEXII_3_MessageContainer.xsd" 

           modelBaseVersion="3"> 

    <con:payload lang="en" 

           xsi:type="sit:SituationPublication" 

           modelBaseVersion="3"> 

    ... 

    </con:payload> 

    <con:exchangeInformation modelBaseVersion="3"> 

      <ex:exchangeContext> 

        <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol> 

        <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

        <ex:supplierOrCisRequester/> 

      </ex:exchangeContext> 

      <ex:dynamicInformation> 

        <ex:exchangeStatus>online</ex:exchangeStatus> 

        <ex:messageGenerationTimestamp>2021-07-21T13:00:00 

        </ex:messageGenerationTimestamp> 

      </ex:dynamicInformation> 

    </con:exchangeInformation> 

  </con:messageContainer> 

</S:Body> 

 

 Important notes on DATEX II v3 
 

1. The mandatory codedExchangeProtocol element depends on the applied 
receipt / delivery protocol. 

2. With each data delivery from the MDM to the data client system, the value of 
this element is as set follows: 

a. „snapshotPush“, if the MDM delivers the package to the data client via 
SOAP-Push 

b. „snapshotPull“, if the data client sends a SOAP Pull request to the MDM 

c. „snapshotPull“, if the data client sends an HTTP Pull request to the 
MDM 

3. The value of the messageGenerationTimestamp element is not changed when 
data is provided to the data client system by the MDM, i.e. the timestamp is an 
end-to-end value, which equals the original timestamp of the provided data 
package. 

 

 



  

 

 Mobility Data Marketplace  Page 18 
 

4.4 Usage of Interfaces 

When using the HTTPS or SOAP protocol, there are three different modes of 
operation for the exchange of data, all of which are supported by the MDM platform: 

 

Mode Description 

Client Pull The communication is initiated by the client (MDM broker 
system to data supplier or data client system to MDM 
platform) and the data is sent as a response. 

Publisher Push Periodic The communication is initiated by the publisher (data 
supplier system to MDM platform) at timed intervals. 

Publisher Push on 
Occurrence 

The communication is always initiated by the publisher 
(data supplier system to MDM platform or MDM broker 
system to data client) if the data changes. 

Table 7: MDM operation modes 

For data exchange with the MDM, transport encryption with TLS 1.2 and 
authentication by means of standard compliant X.509v3 certificates have to be 
used. If the standard protocols provide for basic authentication by user name and 
password, any of these protocol elements will be ignored. This applies to the OCIT-
C protocol [OCIT-C] in particular, as described in the following. 

The MDM uses an OCIT-C interface based on the OCIT-C standard in version 
1.1_R1 from 30/10/2014. The OCIT-C functionality is restricted by the MDM and is 
provided under the stipulation of a specific use of protocol elements. OCIT-C uses 
only DATEX II v2 as data model, as described in this document or in 
[DATEXIIv2Spec]. OCIT-C data models are not supported. 

Note: As of January 01, 2021, the OTS 2 protocol is no longer supported. 

4.4.1 Data Supplier 

Towards the data supplier (the publisher), the MDM broker system appears as a 
subscriber who receives the data packets. The broker system can assume the role 
of a server or a client, depending on the procedure.  

When using the OCIT-C protocol, the broker system acts as a server and the data 
supplier system acts as a client. 

4.4.2 Data Client 

Towards the data client (the subscriber), the MDM broker system appears as a 
publisher who provides the data packets. The broker system can assume the role 
of a server or a client, depending on the procedure.  

When using the OCIT-C protocol, the broker system acts as a server and the data 
client system as a client. 



  

 

 Mobility Data Marketplace  Page 19 
 

4.5 Usage of the „If-Modified-Since“ Header Field in the HTTPS 
Protocol 

The broker system supports the "If-Modified-Since" in association with the "Last-
Modified" header field (see [HTTP/1.1]). As a result, the transfer of already 
collected data packets can be prevented. 

Example: 

If the response of the previous data packet contains the following header line 

Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT 

the next data packet will be requested with a request, which contains the following 
header line: 

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT 

4.5.1 Data Supplier 

The broker system sends the request with an "If-Modified-Since" header field 
whenever the data supplier system had set the header field "Last-Modified" in its 
response. 

The data supplier system should always set this header field to enable the MDM 
platform to use this feature. 

4.5.2 Data Client 

The responses of the broker system always contain the header field "Last-
Modified". If the data client system wants to use this feature, it must always transmit 
the value from the last Last-Modified header field. 

It is strongly recommended to implement this feature on the data client side! 

4.5.3 Unchanged Data 

If a DATEX II client pull request uses the "If-Modified-Since" header field, and if 
there are no more recent data packets than those already gathered, an HTTP 
status code 304 = "Not-Modified" will be generated.  



  

 

 Mobility Data Marketplace  Page 20 
 

5 DATEX II v2 

5.1 SOAP Interface 

5.1.1 Data Supplier 

5.1.1.1 Client Pull SOAP 

As with the Client Pull SOAP exchange process, the MDM broker system requests 
the data supplier system to deliver its data to the MDM platform. 

5.1.1.1.1 Offering a Web Service 

The data supplier system must provide a web service with the method 
getDatex2Data that is defined according to the DATEX II Pull WSDL 
[DATEXIIv2Pull]. Null is thereby expected as input. As output, the MDM broker 
system receives the requested data in DATEX II format. In the body element, an 
object of the d2LogicalModel type is expected. 

Via the MDM administration component, the data supplier must enter its URL in 
the publication configuration. 

5.1.1.1.2 Calling up a Web Service 

The MDM broker system has to provide a web service client that is defined 
according to the DATEX II pull WSDL [DATEXIIv2Pull] to invoke web services. This 
web service must return data according to the schema [DATEXIIv2Schema]. A 
suitable profile from the entire schema is expected to be used. 

The broker system identifies the data supplier systems that have subscribed to a 
pull method and the associated service endpoints in the metadata directory and 
periodically calls them up according to the configured publication frequency. The 
data received after the call is cached in corresponding packet buffers to be 
provided to potential data clients. A previous data packet, if it still exists, will be 
replaced. 

5.1.1.2 Publisher Push SOAP 

With the Publisher Push exchange process, the data supplier system must deliver 
the data to the MDM platform on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is irrelevant to the 
operation of the MDM broker system. The mechanism for the exchange is the same 
in both cases. 

5.1.1.2.1 Offering a Web Service 

The MDM broker system provides a web service with the method putDatex2Data 
that is defined based on the specification DATEX II Push WSDL [DATEXIIv2Push]. 
The data to be supplied is expected as input. As output, the data supplier system 
receives confirmation data in DATEX II format. In the body element, respectively, 
an object of the d2LogicalModel type is expected. 

The output consists of an acknowledgement of receipt. 



  

 

 Mobility Data Marketplace  Page 21 
 

 

In the service endpoint URL of the broker system, the ID of the target publication 
for the data packets is entered. 

The URL is structured as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/<publication 

ID>/supplierPushService 

 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Envelope xmlns:S="https://schemas.xmlsoap.org/soap/envelope/"> 

  <S:Body> 

    <d2LogicalModel xmlns="https://datex2.eu/schema/2/2_0" modelBaseVersion="2"> 

      <exchange> 

        <supplierIdentification> 

          <country>de</country> 

          <nationalIdentifier>DE-MDM-Musterorg</nationalIdentifier> 

        </supplierIdentification> 

      </exchange> 

      <payloadPublication xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"  

                          xsi:type="SituationPublication" lang="DE"> 

        <publicationTime>2021-08-18T13:09:00.106+02:00</publicationTime> 
        ... 

      </payloadPublication> 

    </d2LogicalModel> 

  </S:Body> 

</S:Envelope> 

 

5.1.1.2.2 Calling up the Web Service 

The data supplier system has to provide a web service client that is defined 
according to DATEX II Push WSDL [DATEXIIv2Push] to call up the web service. 
The web service must deliver the data to the publication-specific service endpoint 
of the MDM broker system. The URL of the service endpoint to be used is displayed 
in the MDM portal publication configuration. The MDM broker system accepts this 
data and stores it in a packet buffer. A previous data packet, if it still exists, will be 
replaced. 



  

 

 Mobility Data Marketplace  Page 22 
 

5.1.2 Data Client 

5.1.2.1 Client Pull SOAP 

With the Client Pull SOAP exchange process, the data client system must prompt 
the MDM platform to transfer the data to the data client system. 

5.1.2.1.1 Offering a Web Service 

The MDM broker system provides a web service with the method putDatex2Data 
that is defined based on the specification [DATEXIIv2Pull]. As input, the 
subscription ID is expected here in the URL, as output, the data client receives the 
requested data in DATEX II format. In the body element, an object of the 
d2LogicalModel type is expected. Based on the transmitted subscription ID, the 
MDM platform can find the corresponding packet buffer and the data packet. 

Example: 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Envelope xmlns:S="https://schemas.xmlsoap.org/soap/envelope/"> 

  <S:Body /> 

</S:Envelope> 

5.1.2.1.2 Calling up the Web Service 

The data client system must provide a web service client that is defined according 
to the specification [DATEXIIv2Pull] to invoke web services. The corresponding 
subscription ID must be carried in the URL as input parameter. 

The SOAP endpoint of the broker system is as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/<subscription 

ID>/clientPullService 

5.1.2.2 Publisher Push SOAP 

With the Publisher Push exchange process, the MDM broker system delivers the 
data to the data client systems on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is in this case 
irrelevant; the mechanism for the delivery to the data client is identical. 

5.1.2.2.1 Offering a Web Service 

The data client system must provide a web service with the method putDatex2Data 
that is defined according to the specification [DATEXIIv2Push]. The data to be 
supplied is expected as input. As output, the MDM platform receives confirmation 
data in DATEX II format. In the body element, respectively, an object of the 
d2LogicalModel type is expected. The format of the input parameter corresponds 
to the DATEX II schema [DATEXIIv2Schema]. 

5.1.2.2.2 Calling up the Web Service 

The MDM broker system provides a web service client that is defined according to 
[DATEXIIv2Push] to invoke the web services of the data client system. Via the 
MDM administration component, the data client must enter its service endpoint in 
the subscription configuration. 



  

 

 Mobility Data Marketplace  Page 23 
 

The broker system identifies the data client systems and launches a corresponding 
web service call. 

If the data transfer could be successfully completed, the broker system would then 
expect a confirmation message from the data client system. The following example 
shows the content of a so-called acknowledge response, which is included in the 
body element of a submission via SOAP protocol: 

<D2LogicalModel:d2LogicalModel modelBaseVersion="2"  

                               xsi:schemaLocation="https://datex2.eu/schema/2/2_0/ 

DATEXIISchema_2_2_0.xsd" xmlns:D2LogicalModel="https://datex2.eu/schema/2/2_0"  

                         xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

<D2LogicalModel:exchange> 

        <D2LogicalModel:response>acknowledge</D2LogicalModel:response> 

    </D2LogicalModel:exchange> 

... 

</D2LogicalModel:d2LogicalModel> 

 



  

 

 Mobility Data Marketplace  Page 24 
 

5.2 HTTPS Interface 

5.2.1 Data Supplier 

5.2.1.1 Client Pull HTTPS 

As with the client pull exchange process, the MDM broker system periodically 
requests the data supplier system to deliver its data to the MDM platform. The time 
interval used must be configured in the metadata directory when configuring the 
data services. For this exchange, items C.1-C.12 from the Simple HTTP Server 
Profile of [DATEXIIv2PSM], chapter 4, shall apply. 

It should be noted that the additional, optional rules do not apply. The options for 
authentication (C.13, C.14, C.17) do not apply, as they are obsolete when using 
the HTTPS method that is compulsory for MDM. C.18-C.27 do no longer apply, 
since the options relate only to the optional provision of DATEX II data in file format, 
which is not applicable to MDM. See also Appendix B – DATEX II HTTP Protocol 
Support. 

5.2.1.1.1 Request to Data Supplier 

The MDM broker system sends an HTTPS GET request to the data supplier 
system from which the data is to be collected. The MDM platform is able to identify 
the data supplier systems that have subscribed to a pull method, and to send 
requests to them at defined intervals. 

Via the MDM administration component, the data provider must enter the 
publication-specific server URL in the publication configuration. 

Also, consider chapter 4.5, Usage of the „If-Modified-Since“ Header Field. 



  

 

 Mobility Data Marketplace  Page 25 
 

5.2.1.1.2 Response to the MDM Platform 

After receipt of the request, the data supplier system must generate an HTTPS 
response whose message body consists of the requested DATEX II data. Pursuant 
to [DATEXIIv2PSM] section 4, the response has the content type "text/xml; 
charset=utf-8" and can be available as GZIP encoding. 

The MDM broker system accepts this data and stores it in a packet buffer. A 
previous data packet, if it still exists, will be replaced. 

5.2.2 Data Client 

5.2.2.1 Client Pull HTTPS 

With the client pull exchange process, the data client system must prompt the MDM 
broker system to transfer the data. 

5.2.2.1.1 Request to the MDM Platform 

The data client system must send an HTTPS GET request to the URL of the MDM 
platform. Due to the subscription ID, the associated packet buffer and the data 
packet are determined. 

The subscription ID has to be provided in the URL path and as parameter. The 
URL of the broker system is therefore constructed as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/<subscription 

ID>/clientPullService?subscriptionID=<subscription ID> 

 

Also, consider chapter 4.5, Usage of the „If-Modified-Since“ Header Field. 



  

 

 Mobility Data Marketplace  Page 26 
 

5.2.2.1.2 Response to Data Client 

The MDM broker system generates an HTTPS response after receipt of the 
request. For this purpose, the associated packet buffer and the appropriate data 
package will be determined based on the subscription ID. The content of the data 
packet is sent to the data client in the body of the response. Pursuant to DATEX II 
Client Pull HTTP profile [DATEXIIv2PSM] section 4, the response has the content 
type „text/xml; charset=utf-8“ and is always sent GZIP compressed, deviating from 
the specification in [DATEXIIv2PSM]. 

Default HTTP status codes may occurd according to [HTTP/1.1], while their 
significance is given in Table 8. 

 

Description 

Request  Request GET  
/BASt-MDM-Interface/srv/clientPullService?subscriptionID=2000000 
HTTP/1.1 

Host: mdmhost 

Accept-Encoding: GZIP 

Response Response HTTP/1.1 200 OK 

Content-Type: text/xml 

Content-Length: xx 

< d2LogicalModel > 

… 

</d2LogicalModel > 

Status codes Standard HTTP1.1 Status codes [HTTP/1.1] 

The following status codes have special significance: 

- 304: not modified, the requested resource is not transmitted again 

- 403: authentication error 

- 404: no data packet in packet buffer of the subscription, no 
subscription or invalid subscription found for subscription parameter 

- 503: service unavailable (e.g., in case of maintenance) 

Table 8: Request/Response between MDM platform and data client system (Client Pull HTTPS) 



  

 

 Mobility Data Marketplace  Page 27 
 

5.3 OCIT-C Interface 

Note: This interface only supprts DATEX II v2. It does not support the DATEX II v3 
standard! 

5.3.1 Features 

From the functionality of the OCIT-C standard, the MDM implements the subset of 
protocol functions needed for the transmission of the current data packet with all 
the information of a publication. According to the completeness paradigm of MDM, 
the exchange of data subsets (delta supplies) is not supported. Historical data 
cannot be queried neither. 

The MDM implements a web service with the complete WSDL OCIT_Cif.wsdl, 
which is accessible under the specific OCIT context https://brokermdm-
portal.de/BASt-MDM-OCIT-Interface/ocit/. The call for an unsupported action is, 
however, acknowledged with a SOAP fault with the value "action not supported".  

The data schema is defined by the OCIT-C schema protokoll.xsd. To transport the 
data, the OCIT messages use a data list, which can contain multiple data objects. 
In communicating with the MDM, the data list must always contain only one data 
object. The DATEX II packet has to be transparently embedded into the <data> 
element of the message. Data submissions with multiple packets are 
acknowledged with an error. 

The <data> element of the OCIT-C message is specified in the protokoll.xsd as an 
element of type anyType. For a SOAP-compliant transmission, the <data> element 
has to be typed. For this purpose, a new data type anyD2LogicalModel is 
introduced using the following OcitCDatex2.xsd. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="https://odg_und_partner/OCIT_C/Datex"  

           xmlns:xs="https://www.w3.org/2001/XMLSchema"  

           xmlns:D2LogicalModel="https://datex2.eu/schema/2/2_0"  

           targetNamespace="https://odg_und_partner/OCIT_C/Datex"  

           elementFormDefault="qualified" attributeFormDefault="unqualified"> 

    <xs:element name="d2LogicalModel" type="anyD2LogicalModel"/> 

    <xs:complexType name="anyD2LogicalModel"> 

        <xs:sequence> 

            <xs:any namespace="https://datex2.eu/schema/2/2_0"/> 

        </xs:sequence> 

    </xs:complexType> 

</xs:schema> 

 

The schema can be referenced using the following URL: 
http://bast.s3.amazonaws.com/schema/1446644360562/OcitCDatex2.xsd 

https://service.mac.mdm-portal.de/BASt-MDM-OCIT-Interface/ocit/
https://service.mac.mdm-portal.de/BASt-MDM-OCIT-Interface/ocit/
http://bast.s3.amazonaws.com/schema/1446644360562/OcitCDatex2.xsd


  

 

 Mobility Data Marketplace  Page 28 
 

5.3.2 Data Supplier – Publisher Push OCIT-C 

The Publisher Push functionality is represented by the OCIT-C method “put”. A put 
call must always be assigned uniquely to a publication by referencing a publication 
ID. This publication ID that is automatically assigned by the MDV of MDM has to 
be transmitted by the data supplier system in OCIT-C element <objectType>. 

A put message must contain exactly one element of the DATEX II type 
D2LogicalModel. For this purpose, the request has to contain a data list with 
exactly one data object. A call with more data objects will be rejected by the MDM 
with an error. The delivery of a DATEX II element must always be complete, i.e., it 
must include all data points or objects of the publication. However, this cannot be 
checked by MDM. It is the responsibility of the data supplier system to ensure this 
completeness. 

In the MDM metadata administration, the DATEX II element can be manually 
validated against the publication schema stored in the MDM. This schema may 
only describe the DATEX II payload without the OCIT-C container. The OCIT 
message is not fully validated. 

The following subsection is an example of a possible delivery in OCIT-C format for 
a publication with the fictitious ID=2600103 of a fictitious organization „TEST“. The 
DATEX II payload is shown in abbreviated form. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                  xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                  xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

  <soapenv:Body> 

    <put xmlns="https://odg_und_partner/OCIT_C"> 

      <userName>Hello</userName> 

      <passWord/> 

      <objectType>2600103</objectType> 

      <putList> 

        <putds> 

          <identifier> 

            <ident>test</ident> 

          </identifier> 

          <data xsi:type="ns1:anyD2LogicalModel"  

                xmlns:ns1="https://odg_und_partner/OCIT_C/Datex"  

                xsi:schemaLocation="https://bast.s3.amazonaws.com/schema/ 

                                   1446644360562/OcitCDatex2.xsd"> 

            <ns2:d2LogicalModel modelBaseVersion="2" extensionName="MDM"  

                                extensionVersion="00-01-03"  

                                xmlns:ns2="https://datex2.eu/schema/2/2_0"  

                                xmlns:xsi="https://www.w3.org/2001/ 

                                           XMLSchema-instance"  

                                xsi:schemaLocation=" 

                                 https://bast.s3.amazonaws.com/schema/ 

                                 1370477853100/ 

                                 MDM-Profile_ParkingFacilityStatus.xsd"> 

              <ns2:exchange> 

                <ns2:supplierIdentification> 

                  <ns2:country>de</ns2:country> 

                  <ns2:nationalIdentifier>DE-MDM-TEST</ns2:nationalIdentifier> 

                </ns2:supplierIdentification> 

              </ns2:exchange> 



  

 

 Mobility Data Marketplace  Page 29 
 

              <ns2:payloadPublication xsi:type="GenericPublication" lang="de"  

                                      xmlns:xsi="https://www.w3.org/2001/ 

                                                XMLSchema-instance"> 

            … 

              </ns2:payloadPublication> 

            </ns2:d2LogicalModel> 

          </data> 

        </putds> 

      </putList> 

    </put> 

  </soapenv:Body> 

</soapenv:Envelope> 

 

When data is delivered, the MDM ignores the following items in the OCIT-C 
protocol:  

o username 

o password 

o identifier within the “putds” attribute 

The MDM confirms the delivery with an OCIT message of putResponse type. The 
elements are set as follows: 

o lastStart = Time of delivery 

o errorCode = 0; Basically, a formally correct delivery is always 
acknowledged as error-free, regardless of the quality of the data packet. 

o errorText = without content 

o badList = empty element 

The following subsection shows a sample response. 

 

<?xml version="1.0" encoding="UTF-8"?> 

   <soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                     xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                     xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">  

      <soapenv:Body>   

         <putResponse xmlns="https://odg_und_partner/OCIT_C">    

            <lastStart>2015-04-28T11:39:06.948Z</lastStart>    

            <errorCode>0</errorCode>    

            <errorText></errorText>    

            <badList/>   

         </putResponse>  

      </soapenv:Body> 

   </soapenv:Envelope> 

 



  

 

 Mobility Data Marketplace  Page 30 
 

5.3.3 Data Client – Client Pull OCIT-C 

The Client Pull functionality is represented by the following three OCIT-C methods: 

o inquireAll 

o get 

o wait4Get 

After its launch with the inquireAll method, an OCIT-C client can synchronize with 
the current data state. For this purpose, the MDM supports the inquireAll method. 
In the inquireAllResponse, the MDM passes the last valid packet and its internal 
MDM-ID over to the client. Subsequently, the client can collect the current 
packages on an ongoing basis, using the methods get or wait4Get. Here, the client 
must refer to its last packet ID. If no new packet is available in the MDM, the get 
method will immediately return with an empty response. The wait4Get method will 
wait until a current data packet is available or a maximum timeout, which is 
predetermined by the client or defined by the server, has been reached. By using 
the wait4Get method, a quasi push feature can be implemented toward the data 
client. In contrast to the actual OCIT-C behavior, the MDM always returns a full 
data packet with a get- or wait4GetResponse and not only delta data related to the 
last position. Generally, the MDM supports no delta packages. 

As an alternative to an inquireAll call, a client can also call the get method with the 
element value position = 0 to initialize itself or to collect at any time the latest 
available package. 

For all three pull methods, the MDM ignores the following elements of the request 
from the OCIT-C protocol: 

o username 

o password 

o watchdog 

The filterList attribute in the call is not supported by any of the three methods and 
must always be requested empty from the data client system. 

A client pull must always be uniquely assigned to a publication by referencing a 
subscription ID. This subscription ID, which is automatically assigned by the MDV 
of MDM, must be handed over by the data client system in the OCIT-C element 
<objectType>. 

  



  

 

 Mobility Data Marketplace  Page 31 
 

The following subsection is an example of a request for delivery in OCIT-C format 
for a fictitious subscription with the ID=2871015 of a fictitious organization „TEST“.  

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                  xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                  xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

  <soapenv:Body> 

         <inquireAll xmlns="https://odg_und_partner/OCIT_C">       

            <userName>Hello</userName>       

            <passWord/>       

            <objectType>2871015</objectType>       

            <filterList/>     

         </inquireAll>   

      </soapenv:Body> 

   </soapenv:Envelope> 

 

The corresponding inquireAllResponse contains a data list with exactly one 
element of the DATEX II type D2LogicalModel. In this context, the MDM sets the 
following OCIT-C elements as follows: 

o lastStart = an undefined, constant time the client should ignore 

o errorCode = 0  

o errorText = without content 

o storetime/tstore = time of publication delivery at the MDM 

o position = content ID of current data packet 

o objectState = modified 

o ident = none 

o data = DATEX II payload 

 
The following subsection shows a sample response. The DATEX II payload is 
shown in abbreviated form. 

 

<?xml version="1.0" encoding="UTF-8"?> 

   <soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                     xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                     xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">  

      <soapenv:Body>   

         <inquireAllResponse xmlns="https://odg_und_partner/OCIT_C">    

            <lastStart>2015-04-28T11:39:06.948Z</lastStart>    

            <errorCode>0</errorCode>    

            <errorText></errorText>    

            <storetime>2015-04-29T11:57:59.346Z</storetime>    

            <position>1</position>    

            <dataList>     

               <ds>      

                  <tstore>2015-04-29T11:57:59.346Z</tstore>      

                  <objectState>modified</objectState>      

                  <identifier>       

                     <ident>None</ident>      

                  </identifier>      



  

 

 Mobility Data Marketplace  Page 32 
 

                  <data xsi:type="ns1:anyD2LogicalModel"  

                        xmlns:ns1="https://odg_und_partner/OCIT_C/Datex"  

                        xsi:schemaLocation=" https://odg_und_partner/OCIT_C/Datex  

                                             https://bast.s3.amazonaws.com/ 

                                             schema/1446644360562/OcitCDatex2.xsd"> 

                     <d2LogicalModel modelBaseVersion="2" extensionName="MDM"  

                                     extensionVersion="00-01-03"  

                                     xmlns="https://datex2.eu/schema/2/2_0"  

                                     xmlns:xsi="https://www.w3.org/2001/ 

                                               XMLSchema-instance"  

                                     xsi:schemaLocation="  

                              https://bast.s3.amazonaws.com/schema/1370439856400/ 

                              MDM-Profile_ParkingFacilityStatus.xsd"> 

                        <exchange> 

                           <supplierIdentification> 

                              <country>de</country> 

                                 <nationalIdentifier>DE-MDM-TEST 

                                 </nationalIdentifier> 

                           </supplierIdentification> 

                        </exchange> 

                        <payloadPublication xsi:type="GenericPublication" lang="de" 

                         xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

                    … 

                        </payloadPublication> 

                     </d2LogicalModel> 

                  </data> 

               </ds>      

            </dataList>     

         </inquireAllResponse>  

      </soapenv:Body> 

   </soapenv:Envelope> 

 

With the help of the item <position> from the inquireAllResponse, the data client 
system can parameterize the get or wait4Get method to read subsequent packets. 

A get call should always be distinctly assigned to a subscription by referencing a 
subscription ID and be assigned to a data packet by referencing the content ID. 
This subscription ID must be handed over by the data client system in the OCIT-C 
attribute <objectType> and the Content-ID in the attribute <position>. The MDM 
does not support a get call using a start and end time.  

The following example shows a get request for delivery in OCIT-C format for a 
fictitious subscription (ID=2871015) and a fictitious preceding content ID=3876098: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                  xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                  xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

  <soapenv:Body> 

         <get xmlns="https://odg_und_partner/OCIT_C">       

            <objectType>2871015</objectType>       

            <position>3876098</position> 

         </get>   

      </soapenv:Body> 

   </soapenv:Envelope> 

 

  



  

 

 Mobility Data Marketplace  Page 33 
 

The MDM then forms the getResponse and wait4GetResponse using the same 
attributes as in the inquireAllResponse. 

For the wait4Get call, the same requirements apply as for the regular get call. In 
addition, the data client system must transmit the timeout value of the client in the 
<MaxWaitTime>. If this element is not submitted, the wait4Get request behaves 
like a regular get request and immediately sends an empty response, if no data 
package has been received in the meantime. If this value is above the 120 second 
maximum set in the MDM, the default  MDM timeout is applied and the requester 
receives a response after a maximum of 120 seconds. This response is empty, if 
no data package has been received during the waiting interval. 

The MDM does not support the option to read different objects by means of a single 
wait4Get request. Thus, only one subscription can be queried with a wait4Get call. 
List queries are rejected with an error. 

The following example shows a wait4Get request for delivery in OCIT-C format for 
a fictitious subskription (ID=2871015), the fictitious content ID=3876098 and 
maxWaitTime=60 seconds. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope xmlns:soapenv="https://schemas.xmlsoap.org/soap/envelope/"  

                  xmlns:xsd="https://www.w3.org/2001/XMLSchema"  

                  xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"> 

  <soapenv:Body> 

      <wait4Get xmlns=\"http://odg_und_partner/OCIT_C\"  maxWaitTime='60'> 

       <get xmlns=\"http://odg_und_partner/OCIT_C\"> 

           <objectType>2871015</objectType> 

           <position>3876098</position> 

       </get> 

       </wait4Get> 

  </soapenv:Body> 

</soapenv:Envelope> 

 

This is an example of a wait4Get response from the MDM: 

<?xml version="1.0" encoding="UTF-8"?> 

<soapenv:Envelope  

<soapenv:Header/> 

  <soapenv:Body> 

    <ocit:wait4GetResponse xmlns:ocit="http://odg_und_partner/OCIT_C"> 

    <ocit:lastStart>2021-07-22T15:37:38.000+02:00</ocit:lastStart> 

    <ocit:errorCode>0</ocit:errorCode> 

    <ocit:errorText></ocit:errorText> 

    <ocit:waitResponseList> 

      <ocit:storetime>2021-08-02T11:53:51.480+02:00</ocit:storetime> 

      <ocit:objectType>0</ocit:objectType> 

      <ocit:position>0</ocit:position> 

      <ocit:dataList> 

        <ocit:ds> 

          <ocit:tstore>2021-08-02T11:53:51.480+02:00</ocit:tstore> 

          <ocit:objectState>modified</ocit:objectState> 

          <ocit:identifier> 

            <ocit:ident>None</ocit:ident> 

          </ocit:identifier> 

          <ocit:data xsi:type="ns1:anyD2LogicalModel"  

                     xmlns:ns1="http://odg_und_partner/OCIT_C/Datex"  

                     xsi:schemaLocation="http://odg_und_partner/OCIT_C/Datex  



  

 

 Mobility Data Marketplace  Page 34 
 

                                         http://bast.s3.amazonaws.com/schema/ 

                                         1446644360562/OcitCDatex2.xsd"> 

          </ocit:data> 

        </ocit:ds> 

      </ocit:dataList> 

    </ocit:waitResponseList> 

    </ocit:wait4GetResponse> 

  </soapenv:Body> 

</soapenv:Envelope> 

 

The delivery of data packets at the MDM is generally GZIP compressed. This also 
applies to delivery via OCIT-C protocol. Data client systems must therefore 
decompress the packages in the web server before they can be processed using 
the OCIT-C protocol. 

5.3.4 Error Handling 

The following OCIT-C error codes are used: 

Error code Description 

access error (1) fundamentally incorrect parameterization of requests 

internal error (22) error in the internal processing of the request 

missing parameters 
to execute the 
method (23) 

missing subscription ID with get,wait4get or inquireAll 

Table 9: OCIT-C error codes used 



  

 

 Mobility Data Marketplace  Page 35 
 

6 DATEX II v3 

Contrary to DATEX II v2 Exchange, data transport in DATEX II v3 Exchange 2020 
is realised by means of a MessageContainer structure. The MDM does not support 
all of the elements allowed by the DATEX II v3 specification, therefore the term 
“Minimal MessageContainer” is used. This container must include a payload 
element and an exchangeInformation element. The Minimal MessageContainer 
and the exchangeInformation element are available for download under 
[DATEXIIv3Exc]. 

The exchangeInformation element consists of two data structures with the 
following mandatory attributes: 

o exchangeContext: 

o codedExchangeprotocol: An attribute of an enumeration type; its 
value depends on the applied protocol: 

▪ For SOAP interfaces, either „snapshotPull“ or 
„snapshotPush“ are used. 

▪ For HTTP Pull, „snapshotPull“ is used. 

o exchangeSpecificationVersion: The MDM expects the value „3.0“. 

o supplierOrCisRequester: To be standard-compliant, an empty 
XML element has to be included here. 

o dynamicInformation: 

o exchangeStatus: Here, the fix value „online“ is generally expected. 

o messageGenerationTimestamp: Current timestamp of message 
generation. 

6.1 XML Schema Application Notes for Exchange 2020 

To create a DATEX II v3 publication, the data supplier must provide several XML 
schemas on two different levels: 

1. Data content: DATEX II v3 intruduces a namespace concept to DATEX II. 
With the creation of a publication data profile, a separate XML schema is 
generated for each namespace. Every instance of the publication must 
include a reference to the entry schema. This entry schema depends on 
the required compatibility level: DATEXII_3_D2Payload.xsd is the schema 
to be used for Level A or B publications while LevelC_3_D2Payload.xsd is 
reserved for Level C publications. Via these schemas, any additional 
schema of the according data profile is imported. 

2. Protocol data: For transporting DATEX II v3 contents using the 
corresponding DATEX II Exchange 2020 specification, the MDM includes 
the schema of the content data in two additional schemas: 
MessageContainer.xsd and ExchangeInformation.xsd. 

Both protocol data schemas have been profiled for MDM application. It is important 
to understand that the schema of the DATEX II MessageContainer object is where 
protocol data and the content data are combined. Therefore, this schema must be 



  

 

 Mobility Data Marketplace  Page 36 
 

adapted to handle Level A/B content or Level C content. How to proceed in both 
cases is described in the following. 

6.1.1 DATEX II v3 Level A or B 

Several schemas are created for the XML schema of the publication data profile. 
Here, DATEXII_3_D2Payload.xsd is the schema to be included in each instance 
of the publication. It defines the namespace http://datex2.eu/schema/3/d2Payload. 
The data supplier must upload these content data schemas for his publication in 
the MDM graphical user interface together with the ExchangeInformation.xsd and 
MessageContainer.xsd variants for Level A und B publications [DATEXIIv3Exc]. 

6.1.2 DATEX II v3 Level C 

Several schemas are created for the XML schema of the publication data profile. 
Here, LevelC_3_D2Payload.xsd is the schema to be included in each instance of 
the publication. It defines the namespace http://levelC/schema/3/d2Payload. The 
data supplier must upload these content data schemas for his publication in the 
MDM graphical user interface together with the ExchangeInformation.xsd and 
MessageContainer.xsd variants for Level C publications [DATEXIIv3Exc]. 

 

 Important Note 
In the MDM context, DATEX II v3 content has to be based on an XML entry element 
derived from the abstract class PayloadPublication in the DATEX II v3 package 
Common. As the Exchange 2020 MessageContainer expects this object, it does not 
matter here which compatibility level is applied. 

The XML schema generated from the according DATEX II package Common always 
must be part of the content data schemas, i.e. either DATEXII_3_Common.xsd (Level 
A or B) or LevelC_3_Common.xsd (Level C). 

Users who want to create a Level C publication with a different structure have to carry 
out modifications on XML schema level. For assistance, please contact the MDM 
Support. 

 



  

 

 Mobility Data Marketplace  Page 37 
 

6.2 SOAP Interface 

6.2.1 Data Supplier 

6.2.1.1 Client Pull SOAP 

As with the Client Pull SOAP exchange process, the MDM broker system requests 
the data supplier system to deliver its data to the MDM platform. 

6.2.1.1.1 Offering a Web Service 

The data supplier system must provide a web service that is defined according to 
the DATEX II Snapshot Pull WSDL [DATEXIIv3Pull]. Null is thereby expected as 
input. As output, the MDM broker system expects the requested data inside a 
MessageContainer in DATEX II format according to the Minimal-
MessageContainer profile in the MessageContainer.xsd schema [DATEXIIv3Exc]. 

It is the responsibility of the data supplier to define the mandatory 
exchangeInformation element with its exchangeContext and dynamicInformation 
elements. To provide the data in compliance with the standards, it is important to 
configure the value „snapshotPull“ for the ExchangeProtocol element. Irrespective 
of that, the MDM replaces the codedExchangeProtocol element by the value 
corresponding to the delivery protocol (see chapter 4.1) to provide correct data 
processing to standard conforming data client systems. 

In the publication configuration page of MDM graphical user interface, the data 
supplier must configure the URL of his service endpoint where the MDM can 
retrieve the data packet. 



  

 

 Mobility Data Marketplace  Page 38 
 

6.2.1.1.2 Calling up a Web Service 

The MDM broker system provides a web service client that is defined according to 
the DATEX II Snapshot Pull WSDL [DATEXIIv3Pull] to invoke web services. This 
web service must return data according to the schema MessageContainer.xsd 
[DATEXIIv3Exc]. 

In case there is no data packet available for delivery in the data supplier system, 
the MDM broker system expects the following response: 

• HTTP Response Code 200 Ok 

• A Minimal MessageContainer element without payload 

 

Response example: 

<?xml version="1.0"?> 

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

                   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

  <SOAP-ENV:Body> 

    <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer" 

                          xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

                          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

                          xsi:schemaLocation="http://datex2.eu/schema/3/ 

                                  messageContainer/DATEXII_3_MessageContainer.xsd" 

                          modelBaseVersion="3"> 

      <con:exchangeInformation modelBaseVersion="3"> 

        <ex:exchangeContext> 

          <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol> 

          <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

          <ex:supplierOrCisRequester/> 

        </ex:exchangeContext> 

        <ex:dynamicInformation> 

         <ex:exchangeStatus>online</ex:exchangeStatus> 

         <ex:messageGenerationTimestamp>%TIMESTAMP%</ex:messageGenerationTimestamp> 

        </ex:dynamicInformation> 

      </con:exchangeInformation> 

    </con:messageContainer> 

  </SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

 

The broker system identifies the data supplier systems that have subscribed to a 
pull method and the associated service endpoints in the metadata directory and 
periodically calls them up according to the configured publication frequency. The 
data received after the call is cached in corresponding packet buffers to be 
provided to potential data clients. A previous data packet, if it still exists, will be 
replaced. 



  

 

 Mobility Data Marketplace  Page 39 
 

6.2.1.2 Publisher Push SOAP 

With the Publisher Push exchange process, the data supplier system must deliver 
the data to the MDM platform on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is irrelevant to the 
operation of the MDM broker system. The mechanism for the exchange is the same 
in both cases. 

6.2.1.2.1 Offering a Web Service 

The MDM broker system provides a web service that is defined based on the 
specification DATEX II Snapshot Push WSDL [DATEXIIv3Push]. As input, the data 
to be supplied is expected in a MessageContainer instance in the body element of 
the SOAP envelope. 

It is the responsibility of the data supplier to define the mandatory 
exchangeInformation element with its exchangeContext and dynamicInformation 
elements. To provide the data in compliance with the standards, it is important to 
configure the value „snapshotPull“ for the codedExchangeProtocol element. 
Irrespective of that, the MDM replaces the codedExchangeProtocol element by the 
value corresponding to the delivery protocol (see chapter 4.1) to provide correct 
data processing to standard conforming data client systems. 

In the service endpoint URL of the broker system, the ID of the target publication 
for the data packets is entered. 

The URL is structured as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/<publication 

ID>/snapshotPushService 

 
Example: 

<?xml version="1.0"?> 

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

           xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

  <SOAP-ENV:Body> 

      <con:messageContainer xmlns:con="http://datex2.eu/schema/3/messageContainer" 

                xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

                xmlns:d2="http://datex2.eu/schema/3/d2Payload" 

                xmlns:loc="http://datex2.eu/schema/3/locationReferencing" 

                xmlns:com="http://datex2.eu/schema/3/common" 

                xmlns:sit="http://datex2.eu/schema/3/situation" 

                xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

                xsi:schemaLocation="http://datex2.eu/schema/3/messageContainer  

                                   ./DATEXII_3_MessageContainer.xsd" 

                modelBaseVersion="3"> 

        <con:payload lang="en" 

               xsi:type="sit:SituationPublication" 

               modelBaseVersion="3"> 

          ...  

        </con:payload> 

        <con:exchangeInformation modelBaseVersion="3"> 

          <ex:exchangeContext> 

            <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol> 

            <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

            <ex:supplierOrCisRequester/> 



  

 

 Mobility Data Marketplace  Page 40 
 

          </ex:exchangeContext> 

          <ex:dynamicInformation> 

            <ex:exchangeStatus>online</ex:exchangeStatus> 

            <ex:messageGenerationTimestamp>2021-07-21T13:00:00 

            </ex:messageGenerationTimestamp> 

          </ex:dynamicInformation> 

        </con:exchangeInformation> 

      </con:messageContainer> 

    </SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

 

6.2.1.2.2 Calling up the Web Service 

The data supplier system has to provide a web service client that is defined 
according to DATEX II Snapshot Push WSDL [DATEXIIv3Push] to call up the web 
service. The web service must deliver the data to the publication-specific service 
endpoint of the MDM broker system. The MDM broker system accepts this data 
and stores it in a packet buffer. A previous data packet, if it still exists, will be 
replaced. 

If the data transfer could be successfully completed, the MDM responds via 
DATEX II ExchangeInformation with the positive returnStatus “ack” according to 
the schema definition in ExchangeInformation.xsd [DATEXIIv3Exc]. 

Example: 

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

        xmlns:com="http://datex2.eu/schema/3/common" 

        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

        xsi:schemaLocation="http://datex2.eu/schema/3/exchangeInformation  

                           DATEXII_3_ExchangeInformation.xsd" 

        modelBaseVersion="3"> 

  <ex:exchangeContext> 

    <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol> 

    <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

    <ex:supplierOrCisRequester></ex:supplierOrCisRequester> 

  </ex:exchangeContext> 

  <ex:dynamicInformation> 

    <ex:exchangeStatus>online</ex:exchangeStatus> 

    <ex:messageGenerationTimestamp>2021-08-

06T15:49:33.600+02:00</ex:messageGenerationTimestamp> 

    <ex:returnInformation> 

      <ex:returnStatus>ack</ex:returnStatus> 

    </ex:returnInformation> 

  </ex:dynamicInformation> 

</ex:putSnapshotDataOutput> 

 

  



  

 

 Mobility Data Marketplace  Page 41 
 

If the data transfer could, however, not be successfully completed, the MDM 
responds via DATEX II ExchangeInformation with the negative returnStatus “fail” 
according to the schema definition in ExchangeInformation.xsd [DATEXIIv3Exc], 
e.g., if the publication is not configured for SOAP Push. 

Example: 

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

        xmlns:com="http://datex2.eu/schema/3/common" 

        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

        xsi:schemaLocation="http://datex2.eu/schema/3/exchangeInformation 

DATEXII_3_ExchangeInformation.xsd"     modelBaseVersion="3"> 

  <ex:exchangeContext> 

    <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol> 

    <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

    <ex:supplierOrCisRequester></ex:supplierOrCisRequester> 

  </ex:exchangeContext> 

  <ex:dynamicInformation> 

    <ex:exchangeStatus>online</ex:exchangeStatus> 

    <ex:messageGenerationTimestamp>2021-08-06T15:49:33.600+02:00 

    </ex:messageGenerationTimestamp> 

    <ex:returnInformation> 

      <ex:returnStatus>fail</ex:returnStatus> 

    </ex:returnInformation> 

  </ex:dynamicInformation> 

</ex:putSnapshotDataOutput> 

 

6.2.2 Data Client 

6.2.2.1 Client Pull SOAP 

With the Client Pull SOAP exchange process, the data client system must prompt 
the MDM platform to submit its data. 

6.2.2.1.1 Offering a Web Service 

The MDM broker system provides a web service that is based on the specification 
[DATEXIIv3Pull]. As input, the subscription ID is expected in the URL. As output, 
the data client receives the requested data in a payload element of a 
MessageContainer in DATEX II Exchange 2020 format. Based on the transmitted 
subscription ID, the MDM platform can find the corresponding packet buffer and 
the data packet. 

Note: If, at the time of request, the packet buffer does not include a data packet, 
the MDM responds via MessageContainer without a payload element (see also 
6.2.1.1.2). 



  

 

 Mobility Data Marketplace  Page 42 
 

6.2.2.1.2 Calling up the Web Service 

The data client system must provide a web service client that is defined according 
to the specification [DATEXIIv3Pull] to invoke web services. The corresponding 
subscription ID must be entered in the URL as input parameter. 

The SOAP endpoint of the broker system is as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/<subscription 

ID>/snapshotPull 

 

Example: 

<?xml version='1.0'?> 

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' 

                   xmlns:xsd='http://www.w3.org/2001/XMLSchema' 

                   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'> 

  <SOAP-ENV:Body> 

    <con:messageContainer xmlns:con='http://datex2.eu/schema/3/messageContainer' 

                xmlns:ex='http://datex2.eu/schema/3/exchangeInformation' 

                xmlns:d2='http://datex2.eu/schema/3/d2Payload' 

                xmlns:loc='http://datex2.eu/schema/3/locationReferencing' 

                xmlns:com='http://datex2.eu/schema/3/common' 

                xmlns:sit='http://datex2.eu/schema/3/situation' 

                xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' 

                xsi:schemaLocation='http://datex2.eu/schema/3/messageContainer  

                                   ./DATEXII_3_MessageContainer.xsd' 

                modelBaseVersion='3'> 

      <con:payload lang='en' 

             xsi:type='sit:SituationPublication' 

             modelBaseVersion='3'> 

        ... 

      </con:payload> 

      <con:exchangeInformation modelBaseVersion='3'> 

        <ex:exchangeContext> 

          <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol> 

          <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

          <ex:supplierOrCisRequester/> 

        </ex:exchangeContext> 

        <ex:dynamicInformation> 

          <ex:exchangeStatus>online</ex:exchangeStatus> 

          <ex:messageGenerationTimestamp>2021-07-21T13:00:00 

          </ex:messageGenerationTimestamp> 

        </ex:dynamicInformation> 

      </con:exchangeInformation> 

    </con:messageContainer> 

  </SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

 



  

 

 Mobility Data Marketplace  Page 43 
 

6.2.2.2 Publisher Push SOAP 

With the Publisher Push exchange process, the MDM broker system delivers the 
data to the data client systems on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is in this case 
irrelevant; the mechanism for the delivery to the data client is identical. 

6.2.2.2.1 Offering a Web Service 

The data client system must provide a web service that is defined according to the 
specification [DATEXIIv3Push]. As input, the MDM sends the requested data via 
MessageContainer in the body element. The MDM platform expects a DATEX II 
ExchangeInformation as response with a positive returnStatus “ack” according to 
the schema definition in ExchangeInformation.xsd [DATEXIIv3Exc]. 

6.2.2.2.2 Calling up the Web Service 

The MDM broker system provides a web service client that is defined according to 
[DATEXIIv3Push] to invoke the web services of the data client system. Via the 
MDM administration component, the data client must enter its service endpoint in 
the subscription configuration. 

The broker system identifies the data client systems and launches a corresponding 
web service call. 

If the data transfer could be successfully completed, the broker system would then 
expect a confirmation message from the data client system: 

<ex:putSnapshotDataOutput xmlns:ex="http://datex2.eu/schema/3/exchangeInformation" 

        xmlns:com="http://datex2.eu/schema/3/common" 

        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

        xsi:schemaLocation="http://datex2.eu/schema/3/ 

                           exchangeInformation DATEXII_3_ExchangeInformation.xsd" 

        modelBaseVersion="3"> 

  <ex:exchangeContext> 

    <ex:codedExchangeProtocol>snapshotPush</ex:codedExchangeProtocol> 

    <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

    <ex:supplierOrCisRequester></ex:supplierOrCisRequester> 

  </ex:exchangeContext> 

  <ex:dynamicInformation> 

    <ex:exchangeStatus>online</ex:exchangeStatus> 

    <ex:messageGenerationTimestamp>2021-08-06T15:49:33.600+02:00 

    </ex:messageGenerationTimestamp> 

    <ex:returnInformation> 

      <ex:returnStatus>ack</ex:returnStatus> 

    </ex:returnInformation> 

  </ex:dynamicInformation> 

</ex:putSnapshotDataOutput> 

 



  

 

 Mobility Data Marketplace  Page 44 
 

6.3 HTTPS Interface 

6.3.1 Data Supplier 

6.3.1.1 Client Pull HTTPS 

As with the client pull exchange process, the MDM broker system periodically 
requests the data supplier system to deliver its data to the MDM platform. The time 
interval used must be configured in the metadata directory when configuring the 
data services. For this exchange, the Snapshot Pull rules from [DATEXIIv3Annex], 
appendix C - “Snapshot Pull with simple http server” profile definition apply. 

It should be noted that the additional, optional rules do not apply. The options for 
authentication ([DATEXIIv3Annex], appendix C - “Snapshot Pull with simple http 
server” profile definition, Authentication) do not apply, as they are obsolete when 
using the HTTPS method that is compulsory for MDM. See also Appendix B – 
DATEX II HTTP Protocol Support. 

6.3.1.1.1 Request to Data Supplier 

The MDM broker system sends an HTTPS GET request to the data supplier 
system from which the data is to be collected. The MDM platform is able to identify 
data supplier systems that have subscribed to a pull method, and to send requests 
to them at defined intervals. 

Via the MDM administration component, the data provider must enter the 
publication-specific server URL in the publication configuration. 

Also, consider chapter 4.5, Usage of the „If-Modified-Since“ Header Field. 

6.3.1.1.2 Response to the MDM Platform 

After receipt of the request, the data supplier system must generate an HTTPS 
response whose message body consists of the requested DATEX II v3 data.  
Here, a MessageContainer object is expected, which complies to the the 
MessageContainer.xsd minimal profile [DATEXIIv3Exc]. Pursuant to 
[DATEXIIv3Annex], appendix C - “Snapshot Pull with simple http server” profile 
definition, Basic request / response pattern, the response must have the content 
type "text/xml; charset=utf-8" and can be submitted as GZIP encoding. 

The MDM broker system accepts this data and stores it in a packet buffer. A 
previous data packet, if it still exists, will be replaced. 

Example: 

<?xml version='1.0'?> 

<con:messageContainer xmlns:con='http://datex2.eu/schema/3/messageContainer' 

            xmlns:ex='http://datex2.eu/schema/3/exchangeInformation' 

            xmlns:d2='http://datex2.eu/schema/3/d2Payload' 

            xmlns:loc='http://datex2.eu/schema/3/locationReferencing' 

            xmlns:com='http://datex2.eu/schema/3/common' 

            xmlns:sit='http://datex2.eu/schema/3/situation' 

            xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' 

            xsi:schemaLocation='http://datex2.eu/schema/3/messageContainer  

                               ./DATEXII_3_MessageContainer.xsd' 

            modelBaseVersion='3'> 

 <con:payload lang='en' 

         xsi:type='sit:SituationPublication' 



  

 

 Mobility Data Marketplace  Page 45 
 

         modelBaseVersion='3'> 

    ... 

  </con:payload> 

  <con:exchangeInformation modelBaseVersion='3'> 

    <ex:exchangeContext> 

      <ex:codedExchangeProtocol>snapshotPull</ex:codedExchangeProtocol> 

      <ex:exchangeSpecificationVersion>3.0</ex:exchangeSpecificationVersion> 

      <ex:supplierOrCisRequester/> 

    </ex:exchangeContext> 

    <ex:dynamicInformation> 

      <ex:exchangeStatus>online</ex:exchangeStatus> 

      <ex:messageGenerationTimestamp>2021-07-21T13:00:00 

      </ex:messageGenerationTimestamp> 

    </ex:dynamicInformation> 

  </con:exchangeInformation> 

</con:messageContainer> 

 

6.3.2 Data Client 

6.3.2.1 Client Pull HTTPS 

With the client pull exchange process, the data client system must prompt the MDM 
broker system to transfer the data. 

6.3.2.1.1 Request to the MDM Platform 

The data client system shall send an HTTPS GET request to the URL of the MDM 
platform. Due to the subscription ID, the associated packet buffer and the data 
packet are determined. Alternatively, an HTTPS POST request can be used. 

The URL of the broker system is constructed as follows: 

https://broker.mdm-portal.de/BASt-MDM-

Interface/datexv3/http/content.xml?subscriptionID=<subscription ID> 

 

Also, consider chapter 4.5, Usage of the „If-Modified-Since“ Header Field. 



  

 

 Mobility Data Marketplace  Page 46 
 

6.3.2.1.2 Response to Data Client 

The MDM broker system generates an HTTPS response after receipt of the 
request. For this purpose, the associated packet buffer and the appropriate data 
package will be determined based on the subscription ID. The content of the data 
packet is sent to the data client in the body of the response. Pursuant to DATEX II 
Client Snapshot Pull profile ([DATEXIIv2PSM], appendix C – “Snapshot Pull with 
simple http server” profile definition, Overall presentation), the content is always 
delivered with a MessageContainer instance. The response also has the content 
type „text/xml; charset=utf-8“ and is always sent GZIP compressed, deviating from 
the standard. Requestes using “identity encoding“ or other compression 
formats will be acknowledged with an HTTP 406 (Not Acceptable) error code. 

Default HTTP status codes may occurd according to [HTTP/1.1], while their 
significance is given in Table 10: 

 

Description 

Request  Request GET  
/BASt-MDM-
Interface/datexv3/http/content.xml?subscriptionID=2000000 
HTTP/1.1 

Host: mdmhost 

Accept-Encoding: GZIP 

Response Response HTTP/1.1 200 OK 

Content-Type: text/xml 

Content-Length: xx 

< messageContainer > 

… 

</messageContainer> 

Status codes Standard HTTP1.1 status codes [HTTP/1.1] 

The following status codes have special significance: 

- 304: not modified, the requested resource is not transmitted again 

- 401: authentication error 

- 204: no data packet in subscription packet buffer 

- 404: no subscription or invalid subscription found for subscription 
parameter 

- 406: ressource has not been requested in GZIP format 

- 503: service unavailable (e.g., in case of maintenance) 

Table 10: Request/Response between MDM platform and data client system (Client Pull HTTPS) 

 



  

 

 Mobility Data Marketplace  Page 47 
 

7 Container 

7.1 SOAP Interface 

7.1.1 Data Supplier 

7.1.1.1 Client Pull SOAP 

As with the client pull SOAP exchange process, the MDM broker system 
periodically requests the data supplier system to deliver its data to the MDM 
platform. The time interval used must be configured in the metadata directory when 
configuring the data services. 

7.1.1.1.1 Offering a Web Service 

The data supplier system has to offer a web service with the method 
putContainerDataBroke that expects as input the parameters publication ID (type 
publicationId) and an optional time stamp with the date of creation according to the 
elements of the container model schema. The data supplier system must generate 
and return a data packet (type containerdata) in the container format for the 
transferred publication ID.  

Via the MDM administration component, the data supplier must enter the service 
endpoint in the URL attribute of the publication configuration. 

7.1.1.1.2 Calling up a Web Service 

The MDM broker system provides a web service client that is defined according to 
the container format specification [MCS] to invoke web services.  

The broker system identifies the data supplier systems that have subscribed to a 
pull method and the associated service endpoints in the metadata directory and 
periodically calls them up according to the configured publication frequency. The 
data received after the call is cached in corresponding packet buffers for delivery 
to potential data clients. A previous data packet, if it still exists, will be replaced. 



  

 

 Mobility Data Marketplace  Page 48 
 

7.1.1.2 Publisher Push SOAP 

With the Publisher Push exchange process, the data supplier system must deliver 
the data to the MDM platform on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is irrelevant to the 
operation of the MDM broker system. The mechanism for the exchange is the same 
in both cases. 

7.1.1.2.1 Offering a Web Service 

The MDM broker system provides a web service with the method 
pushContainerData which expects - as input - the data structure of the container 
format filled with the publication ID in the header element and a data packet in the 
body element and returns a status message as output. An object of the type 
containerdata is expected in each case. 

 

Example: 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Envelope xmlns:S="https://schemas.xmlsoap.org/soap/envelope/"> 

  <S:Body> 

    <ns3:container xmlns="https://www.w3.org/2000/09/xmldsig#"  

                   xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"  

                   xmlns:ns3="https://ws.bast.de/container/TrafficDataService"> 

      <ns3:header> 

        <ns3:Identifier> 

          <ns3:publicationId>12345</ns3:publicationId> 

        </ns3:Identifier> 

      </ns3:header> 

      <ns3:body> 

        <ns3:binary id="test-id-bin" 

type="hexBinary">dGVzdC10ZXh0&#xD;.</ns3:binary> 

        <ns3:xmlschema="test-schema" id="test-id-xml"/> 

      </ns3:body> 

    </ns3:container> 

  </S:Body> 

</S:Envelope> 

 

7.1.1.2.2 Calling up the Web Service 

The data supplier system must provide a web service client in accordance with the 
container format specification [MCS]. This client serves to launch the web service.  

The SOAP endpoint of the broker system is as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/container/v1.0 

 



  

 

 Mobility Data Marketplace  Page 49 
 

7.1.2 Data Client 

7.1.2.1 Client Pull SOAP 

With the Client Pull SOAP exchange process, the data client system must prompt 
the MDM platform to transfer the data to the data client system. 

7.1.2.1.1 Offering a Web Service 

The MDM broker system provides a web service with the method 
pullContainerDataClient, which expects - as input - a subscription ID (type 
subscriptionId) in the XML data and an optional timestamp (type timestamp – it 
includes the creation time of the request). As output, the data is returned in 
container format (type containerdata). 

Example: 

<?xml version='1.0' encoding='UTF-8'?> 

<S:Envelope xmlns:S="https://schemas.xmlsoap.org/soap/envelope/"> 

  <S:Body> 

    <ns3:pullContainerDataClientRequestEl  

         xmlns="https://www.w3.org/2000/09/xmldsig#"  

         xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"  

         xmlns:ns3="https://ws.bast.de/container/TrafficDataService"> 

      <ns3:subscriptionId>2000000</ns3:subscriptionId> 

    </ns3:pullContainerDataClientRequestEl> 

  </S:Body> 

</S:Envelope> 

 

7.1.2.1.2 Calling up the Web Service 

The data client system must provide a web service client in accordance with the 
container format specification [MCS]. This client serves to launch the web service.  

The SOAP endpoint of the broker system is as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/container/v1.0 

 

7.1.2.2 Publisher Push SOAP 

With the Publisher Push exchange process, the MDM broker system delivers the 
data to the data client systems on its own initiative. In this process, an appropriate 
SOAP interface must be used. Whether the data is event-based (on occurrence) 
or periodically generated and delivered to the MDM platform is in this case 
irrelevant; the mechanism for the delivery to the data client remains identical. 

7.1.2.2.1 Offering a Web Service 

The data client system must provide a web service with the method 
pushContainerData that is defined on the basis of the container format 
specification [MCS]. A data packet of the type container format (type 
containerdata) must be accepted as input and, as output, a status message (also 
of type containerdata) for delivery. 



  

 

 Mobility Data Marketplace  Page 50 
 

7.1.2.2.2 Calling up the Web Service 

The MDM broker system provides a web service client that is defined according to 
the container format specification [MCS] to invoke the web services of the data 
client system. Via the MDM administration component, the data client must enter 
its service endpoint in the URL attribute of the subscription configuration. 

The broker system identifies the data client systems and launches a corresponding 
web service call. 

If the data transfer could be successfully completed, the broker system would then 
expect a status message from the data client system. 



  

 

 Mobility Data Marketplace  Page 51 
 

7.2 HTTPS Interface 

7.2.1 Data Supplier 

7.2.1.1 Client Pull HTTPS 

The MDM broker system prompts the data supplier system to periodically deliver 
a packet for a publication to the MDM platform. The time interval used must be 
configured in the metadata directory when configuring the data services. 

7.2.1.1.1 Request to Data Supplier 

The broker system sends an HTTPS GET request to the data supplier system. As 
a parameter, the publication ID of the publication for which a data packet has to be 
delivered is handed over to the MDM. Via the MDM administration component, the 
data supplier must enter its URL in the publication configuration. 

The URL of the data supplier system from the publication configuration is 
complemented by appending the publication ID. 

Example: 

GET https://<DG-Server>/<Context>?publicationID=2053008 

content-type: text/plain 

accept-encoding: gzip 

7.2.1.1.2 Response to the MDM Platform 

The data supplier system must respond to the request with an HTTPS response. 
The content type of the response must be of the type "text/xml" and should be 
available as GZIP encoding. Non-compressed content can also be processed by 
the MDM platform. The message body has to include the requested data packet. 
The standard HTTP status codes [HTTP/1.1] must be used, whereby the 
explanations described in Table 11 shall apply. 

Description 

Request  GET /anfrageServlet?publicationID=2000002 HTTP/1.1 

Host: Datengeberhost 

Accept-Encoding: GZIP 

Response HTTP/1.1 200 OK 

Content-Type: text/xml 

Content-Length: xx 

<container> 

… 

</container> 

Status codes Standard HTTP1.1 Statuscodes [HTTP/1.1] 

The following status codes have special significance: 

- 400: no publication parameter has been submitted 

- 404: publication parameters could not be assigned 

Table 11: Request/Response between data supplier system and MDM platform with client pull HTTPS 



  

 

 Mobility Data Marketplace  Page 52 
 

Example: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<container xmlns="https://ws.bast.de/container/TrafficDataService"  

           xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility"  

           xmlns:ns3="https://www.w3.org/2000/09/xmldsig#"> 

    <header> 

        <Identifier> 

            <publicationId>2053008</publicationId> 

        </Identifier> 

    </header> 

    <body> 

        <binary id="test-id-bin" type="hexBinary"> 

            &lt;![CDATA[]]&gt; 

        </binary> 

        <xml schema="test-schema" id="test-id-xml"> 

            <n4:musterDatenRoot> 

                <n4:trafficData origin="home" /> 

            </n4:musterDatenRoot> 

        </xml> 

    </body> 

</container> 

7.2.1.2 Publisher Push HTTPS 

The data supplier system has to send a data packet for a publication to the MDM 
broker system. 

7.2.1.2.1 Request to the MDM broker system 

The data supplier system must send an HTTPS POST request with a message in 
container format to the MDM broker system. In this process, the publication ID 
must be delivered in the header element and the payload must be delivered in the 
body element of the container message. 

The URL of the broker system is constructed as follows: 

https://broker.mdm-portal.de/BASt-MDM-Interface/srv/container/v1.0 

 

Example: 

<?xml version='1.0' encoding='UTF-8'?> 

<ns3:containerRootElementEl xmlns="https://www.w3.org/2000/09/xmldsig#"  

                         xmlns:ns2="https://schemas.xmlsoap.org/ws/2002/07/utility" 

                      xmlns:ns3="https://ws.bast.de/container/TrafficDataService"> 

  <ns3:header> 

    <ns3:Identifier> 

      <ns3:publicationId>12345</ns3:publicationId> 

    </ns3:Identifier> 

  </ns3:header> 

  <ns3:body> 

    <ns3:binary id="test-id-bin" type="hexBinary"> 

      dGVzdC10ZXh0&#xD;. 

    </ns3:binary> 

    <ns3:xml schema="test-schema" id="test-id-xml"> 

      <n4:musterDatenRoot> 

      <n4:trafficData origin="home"/> 

      </n4:musterDatenRoot> 

    </ns3:xml> 

  </ns3:body> 

</ns3:containerRootElementEl> 



  

 

 Mobility Data Marketplace  Page 53 
 

7.2.1.2.2 Response an den Datengeber 

To the request, the data supplier system receives an HTTPS response. The 
message body is empty. The standard HTTP status codes [HTTP/1.1] may occur 
as status codes, where the explanations given in Table 12 shall apply. 

 

Description 

Request  Request POST /datenabgabe HTTP/1.1 

Host: mdmhost 

Content-Type : text/xml 

Accept-Encoding: GZIP 

<container> 

… 

</container> 

Response Response HTTP/1.1 200 OK 

Status codes Standard HTTP1.1 Statuscodes [HTTP/1.1] 

The following status codes have a special significance: 

- 400: no publication parameter or no data submitted 

- 404: publication parameters could not be assigned or publication no 
lonnger valid 

Table 12: Request/Response between data supplier system and MDM platform with publisher push HTTPS 

7.2.2 Data Client 

7.2.2.1 Client Pull HTTPS 

With the client pull exchange process, the data client system must prompt the MDM 
broker system to transfer the data. The according subscription has to be specified 
by a request parameter. 

7.2.2.1.1 Request to the MDM Platform 

The data client system must send an HTTPS GET request to the MDM platform. 
As a parameter, the ID of the subscription for which a data packet has to be 
delivered must be submitted to the MDM. 

The URL of the broker system is constructed as follows: 

https://broker.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0?subscriptionID=<subscription ID> 

7.2.2.1.2 Response an das Datennehmersystem 

The MDM broker system generates an HTTPS response after receipt of the 
request. The standard HTTP status codes [HTTP/1.1] can be used, where the 
explanations described in Table 13 shall apply. The content type of the response 
is of the type "text/xml" and is sent GZIP-compressed. The message body of the 
response consists of the requested data packet. 



  

 

 Mobility Data Marketplace  Page 54 
 

 

Description 

Request  Request GET  
/BASt-MDM-Interface/srv/container/v1.0?subscriptionID=2000000 
HTTP/1.1 

Host: mdmhost 

Accept-Encoding: GZIP 

Response Response HTTP/1.1 200 OK 

Content-Type: text/xml 

Content-Length: xx 

<container> 

… 

</container> 

Status codes Standard HTTP1.1 Statuscodes [HTTP/1.1] 

The following status codes have a special significance: 

- 204: no data packet in subscription packet buffer 

- 400: no subscription parameter 

- 404: no subscription or invalid subscription found for subscription 
parameter 

Table 13: Response between MDM platform/data client system with Client Pull HTTPS 

7.2.2.2 Publisher Push HTTPS 

The MDM broker system sends a data packet of a subscription to a data client 
system. 

7.2.2.2.1 Request to the Data Client System 

The MDM broker system sends an HTTPS POST request to the data client system 
in which the subscription ID is submitted in the header element and the user data 
is submitted in the body element of the container message. 

Via the MDM administration component, the data client must enter its URL in the 
subscription configuration. 

7.2.2.2.2 Response to the MDM Platform 

The data client system must respond to the request with an HTTPS response. 

The message body is empty. The standard HTTP status codes [HTTP/1.1] may be 
used as status codes, where the explanations described in Table 14 shall apply. 

 

Description 

Request  Request POST /data delivery HTTP/1.1 

Host: data client host 

Content-Type : text/xml 



  

 

 Mobility Data Marketplace  Page 55 
 

Accept-Encoding: GZIP 

<container> 

… 

</container> 

Response Response HTTP/1.1 200 OK 

Status codes Standard HTTP1.1 status codes [HTTP/1.1] 

The following status codes have special significance: 

- 400: no subscription parameter or no data submitted 

- 404: subscription parameter could not be assigned 

Table 14: Request/Response between MDM broker system/data client system with Publisher Push HTTPS 

 



  

 

 Mobility Data Marketplace  Page 56 
 

8 Certificate-based M2M Communication 

The security component of the MDM platform requires a certificate-based data 
exchange between the data supplier system and the platform, on the one side, and 
between the platform and the data client system, on the other. 

This chapter begins with an overview of the functions of the security component. 
Then it describes the steps to be taken by the data providers and the data clients 
to request certificates and set them up for M2M communication. 

The certificate is created following a request and then sent to the data supplier/data 
client by e-mail. The password that is required for signature is sent via SMS. 

The data supplier system/data client system must finally integrate the certificate 
into their IT infrastructure, so that the data exchange with the MDM platform can 
be authenticated. 

8.1 Tasks of the Security Component 

The security component is responsible for the realization of the safety aspects of 
the MDM platform. This includes, in particular, the authentication of data supplier 
systems and data client systems, which want to communicate with the MDM 
platform. 

Before the data packets arriving at the MDM platform can be accepted, their origin 
must be checked. This includes the authentication of the data supplier system that 
is associated with the data packet using a digital certificate. Each data supplier 
system must have a valid certificate to be used for login at the platform. The 
security component authenticates the certificate sent by the data supplier system 
within the MDM platform. 

Before a data packet can be sent to a data client system, the identity of this data 
client system needs to be checked. Each data client system must authenticate 
itself to the MDM platform using a digital certificate. The security component 
authenticates the certificate sent by the data client system within the MDM 
platform. 

The confidentiality of communication between the data supplier system and the 
MDM platform, on the one hand, and the MDM platform and the data client system, 
on the other hand, must be ensured by an exclusive use of an SSL/TLS transport 
encryption. 

The security component requires standards-compliant [X.509v3] certificates for 
authentication; see also [PKI]. The certificates must be technically involved in the 
HTTPS connection to the data client and data supplier systems via a client-side, 
certificate-based connection establishment. The presented certificates are 
checked for validity and whether they are blocked or not. 



  

 

 Mobility Data Marketplace  Page 57 
 

 

Figure 4: Overview of the security architecture 

The SSL module 1 in Figure 4 sends a certificate request to the sender for 
predefined URLs, checks the validity of the obtained certificate and then verifies 
whether it is blocked or not. Afterwards, it forwards the certificate to the security 
component of the MDM platform. 

8.2 Note on Server Name Indication 

The MDM platform does not support the Server Name Indication (SNI) feature.  

This means that data suppliers for the client pull method and data clients for the 
publisher push method cannot use any virtual server for M2M communication. 
Each registered machine can represent only a unique IP address. 

8.3 Applying for a Machine Certificate 

The operator of the MDM platform mediates between the data supplier or data 
client systems and the certificate issuer. Therefore, data providers and data clients 
apply - when registering - for one or multiple machine certificates via the 
administration GUI of the MDM platform. The certificate is however sent to them 
by the certificate-issuing organization and not by the operator of the MDM platform. 

To request a machine certificate, you must already be registered on the MDM 
platform with your organization. 

How to apply for a machine certificate on the MDM platform is described in [BHB]. 

8.4 Installing a Machine Certificate and Issuer Certificate 

In the Apache Web server, integrate the machine certificate as follows: 

SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt 

 

Enter the associated private key as follows: 

SSLCertificateKeyFile /usr/local/apache2/conf/ssl.crt/server.key 

 

In addition, you must define the issuer certificate on the web server: 

SSLCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-

client.crt 

 



  

 

 Mobility Data Marketplace  Page 58 
 

The certificate is encrypted by using the key with the password that has been sent 
to you via fax. Use the password to decrypt. 

For more information on these directives, please see the mod_ssl documentation: 

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile 

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile 

 

Note: If you get the machine certificate and the issuer certificate within a common 
p2 file, you must extract both certificates from this file and then install them. The 
relevant instructions are provided in chapter 9. 

8.5 Authentication of the MDM Platform as Web Client 

If the MDM platform acts as a web client in the M2M communication, it will then 
authenticate with its server certificate, provided that the web server has enabled 
this option on the data supplier or data client side. Data supplier and data client 
systems should enable this option and verify the certificate to determine that the 
requests were actually sent by the MDM platform. 

The CA certificates required for verification can be downloaded from 
https://service.mdm-portal.de/doc/MDM-CA-Bundle.zip and must be stored in the 
data supplier or data client systems.  

Note: Do not use the MDM server certificate for verification as it is changed on a 
regular basis. 

8.6 Authentication of Data Supplier/Data Client Web Clients 

If the data supplier or data client systems act as a web client in the M2M 
communication, the web client must authenticate to the MDM platform by using its 
machine certificate. The platform will accept requests only from systems that are 
registered in the metadata directory. Based on the certificate, the machine can be 
associated with the organization. Furthermore, it can be checked whether the 
organization is the owner of the publication or subscription for which data exchange 
is to take place.  

The server certificate for broker.mdm-portal.de has been created by Comodo. In 
most cases, it will not be necessary to install the Comodo CA certificate when using 
the operating system's trust store. Nevertheless, it may be necessary to install the 
CA certificates of the MDM CA. An archive with all required certificates can be 
found at: 

https://service.mdm-portal.de/doc/MDM-CA-Bundle.zip 

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile
http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile
https://service.mdm-portal.de/doc/MDM-CA-Bundle.zip
https://service.mdm-portal.de/doc/MDM-CA-Bundle.zip


  

 

 Mobility Data Marketplace  Page 59 
 

9 Appendix A- Processing the p12 File for Apache Server 
Configuration 

The Apache server configuration cannot handle any files of the type p12. For 
processing, manual steps that are described in the following chapters are required: 

First, export the keys and certificates. Run the following command from the 
command prompt: 

openssl.exe pkcs12 -in <p12-Datei> -out <sammeldatei.pem> 

 

Example: 

openssl.exe pkcs12 -in ehp.otten-software.de.p12 -out ehp.otten-

software.de.keyandcerts.pem 

 

Enter the certificate passwords in the openssl environment: 

>Enter Import Password: <Password from fax> 

>MAC verified OK 

>Enter PEM pass phrase: <Self-selected passphrase for the key> 

>Verifying - Enter PEM passphrase: <Repetition of the self-selected 

passphrase for the key> 

 



  

 

 Mobility Data Marketplace  Page 60 
 

Open the file <sammeldatei.pem> with a text editor: 

 

Figure 5: Datei <sammeldatei.pem> 

Copy the part of 

--- BEGIN RSA PRIVATE KEY ---- 

until 

---END RSA PRIVATE KEY --- 

to a new file named <server.key> 

 



  

 

 Mobility Data Marketplace  Page 61 
 

Remove the passphrase to prevent that it is requested each time the server is 
restarted: 

openssl rsa -in <server.key> -out <server.key.nopass > 

 

Example: 

openssl rsa -in server.key -out ehp.otten-software.de.key 

> Enter passphrase for server.key: <Enter the previously self-selected 

passphrase> 

>writing RSA key 

 

Enter the generated .key file in the Apache configuration under the following 
attribute: 

SSLCertificateKeyFile 

 

Next, split the certificates into two files. To do this, first open the file 
<sammeldatei.pem> with a text editor: 

 

Figure 6: File  <sammeldatei.pem> 



  

 

 Mobility Data Marketplace  Page 62 
 

Copy the server certificate into a new text file <server.crt>. 

Enter this file in the Apache configuration under the following attribute: 

SSLCertificateFile 

 

Copy the remaining certificates into a new text file <ca-cert-chain.crt>. 

 

Enter this file in the Apache configuration under the following attribute: 

SSLCertificateChainFile 

 

Enter the MDM client certificate incl. the certificate hierarchy under the following 
Apache attribute: 

SSLCACertificateFile 

 

Example of an Apache configuration: 

SSLCertificateFile "C:\Programme\Apache Software 

Foundation\Apache2.2\conf\ssl\ssl.crt\ehp.otten-software.de.crt" 

SSLCertificateKeyFile "C:\Programme\Apache Software 

Foundation\Apache2.2\conf\ssl\ssl.key\ehp.otten-software.de.key" 

SSLCertificateChainFile "C:\Programme\Apache Software 

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_cert_chain.crt" 

SSLCACertificateFile "C:\Programme\Apache Software 

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_trust_chain.crt" 

 



  

 
 

 Mobility Data Marketplace Page 63 
 

10 Appendix B – DATEX II HTTP Protocol Support 

Rule Reference to rule in 
[DATEXIIv2PSM], 
chapter 4 

Reference to rule in 
[DATEXIIv3Annex] 

DATEX II v2 DATEX II v3 

Suppliers and Clients SHALL use the HTTP/1.1 protocol. 
Clients and Suppliers shall fully comply with the HTTP/1.1 
protocol specification in RFC 2616, as of June 1999. 

C.1 Basic request / 
response pattern: 

1. 

  

Clients SHALL use the HTTP GET or POST method of the 
HTTP REQUEST message to request data from the 
Supplier. 

C.2 Basic request / 
response pattern: 

2. 

  

Suppliers SHALL use an HTTP RESPONSE message to 
respond to requests. 

C.3 Basic request / 
response pattern: 

3. 

  

Suppliers SHALL NOT respond to HTTP REQUEST 
messages using the GET or POST methods by responding 
with 405 (Method Not Allowed) or 501 (Not Implemented) 
return codes. 

C.4 Basic request / 
response pattern: 

4. 

  

Suppliers Shall set the ‘Last-Modified’ header field in HTTP 
RESPONSE messages that provide payload data 
(response code 200) to the value that the information 
product behind the URL was last updated. 

C.5 Basic request / 
response pattern 

5. 

  

Clients SHOULD set the ‘If-Modified-Since’ header field in 
all HTTP REQUEST messages if they already hold a 
consistent set of data from a particular URL in their 
database and the last modification time of that data is 
known from the ‘Last-Modified’ header field of the HTTP 
header of the HTTP RESPONSE message within which the 
payload data was received. 

C.6 Basic request / 
response pattern: 

6. 

  

When setting the ‘If-Modified-Since’ header field, the Client 
SHALL copy the value of the Last-Modified header field 
received within the last successful HTTP RESPONSE 

C.7 Basic request / 
response pattern: 

7. 

  



  

 
 

 Mobility Data Marketplace Page 64 
 

Rule Reference to rule in 
[DATEXIIv2PSM], 
chapter 4 

Reference to rule in 
[DATEXIIv3Annex] 

DATEX II v2 DATEX II v3 

containing payload (response code 200) message into this 
field. 

Suppliers SHOULD provide XML coded DATEX II payload 
as “text/xml” media type. Suppliers SHOULD state the used 
character set via the “charset” parameter; Suppliers 
SHOULD use the UTF-8 character set, i.e., the “Content-
Type” response-header field SHOULD state “text/xml; 
charset=utf-8. 

C.8 Basic request / 
response pattern: 

8. 

  

Clients MUST accept “identity” content-coding; Clients 
SHOULD (and if they do, prefer to) accept “gzip” content-
coding; Clients MAY accept other “content-coding” values 
registered by the Internet Assigned Numbers Authority 
(IANA) in their content-coding registry1 as long as they also 
accept “identity” and “gzip” content-coding. 

C.9 Basic request / 
response pattern: 

9. 

  

When including an “Accept-Encoding” request-header field 
in an HTTP REQUEST  
message, the Client MUST NOT exclude acceptance of 
“identity” content-coding. 

C.10 Basic request / 
response pattern: 

10. 

  

Suppliers MUST provide “identity” content-coding of the 
payload; Suppliers SHOULD provide “gzip” content-coding 
of the payload; Suppliers MAY provide other “content-
coding” values registered by the Internet Assigned 
Numbers Authority (IANA) in their content-coding registry 
as long as they also provide “identity” and “gzip” content-
coding 

C.11 Basic request / 
response pattern: 

11. 

  

Clients SHOULD fill access credentials they MAY have 
received during the subscription negotiation process into 
the ‘Authorization’ header field of the HTTP REQUEST 
message. 

C.13 Authentication 
  



  

 
 

 Mobility Data Marketplace Page 65 
 

Rule Reference to rule in 
[DATEXIIv2PSM], 
chapter 4 

Reference to rule in 
[DATEXIIv3Annex] 

DATEX II v2 DATEX II v3 

Server providing access credentials (user name & 
password) during the subscription negotiation phase MAY 
respond with response code 401 (Unauthorized) to HTTP 
REQUESTS that do not contain valid access credentials in 
the ‘Authorization’ header field. 

C.14 
 

Servers SHALL produce and Clients SHALL process the 
following return codes:  

• 200 (OK), in responses carrying payload,  
• 304 (Not Modified), if no payload is send because of the 
specification in the ‘If-Modified-Since’ header,  
• 503 (Service Unavailable), if an active HTTP server is 
disconnected from the content feed,  
• 404 (Not Found), if a file based HTTP server does not 
have a proper payload document stored in the place 
associated to the URL. 

C.15 Additional Rules 
() 

difference: 
403 instead 

of 401 

 
additionally 
204, in case 

of empty 
packet buffer 

Payload data for Information products SHALL be denoted 
by a URL according to the following convention:  

d2lcp_infop = "http://" host [":" port] infop_path 
"/content.xml" ["?" query] where “infop_path” is a “path” 
component as specified in section 3.3 of [RFC 2396], but 
excluding the last path segment. 

C.16 Describing payload  
and interfaces   

 


